Page 8 - INTRODUCTION TO THE CALCULUS OF VARIATIONS
P. 8

CONTENTS                                                           vii

                7 Solutions to the Exercises                                     169
                   7.1  Chapter 1: Preliminaries .... ........ ....... .... 169
                       7.1.1  Continuous and Hölder continuous functions  ... .... 169
                               p
                       7.1.2  L spaces ........ ........ ....... .... 170
                       7.1.3  Sobolev spaces ..... ........ ....... .... 175
                       7.1.4  Convex analysis ..... ........ ....... .... 179
                   7.2  Chapter 2: Classical methods . ........ ....... .... 184
                       7.2.1  Euler-Lagrange equation ........ ....... .... 184
                       7.2.2  Second form of the Euler-Lagrange equation .... .... 190
                       7.2.3  Hamiltonian formulation ........ ....... .... 191
                       7.2.4  Hamilton-Jacobi equation ....... ....... .... 193
                       7.2.5  Fields theories ..... ........ ....... .... 195
                   7.3  Chapter 3: Direct methods .. ........ ....... .... 196
                       7.3.1  The model case: Dirichlet integral .. ....... .... 196
                       7.3.2  A general existence theorem ...... ....... .... 196
                       7.3.3  Euler-Lagrange equations ....... ....... .... 198
                       7.3.4  The vectorial case ... ........ ....... .... 199
                       7.3.5  Relaxation theory ... ........ ....... .... 204
                   7.4  Chapter 4: Regularity ..... ........ ....... .... 205
                       7.4.1  The one dimensional case ....... ....... .... 205
                       7.4.2  The model case: Dirichlet integral .. ....... .... 207
                   7.5  Chapter 5: Minimal surfaces .. ........ ....... .... 210
                       7.5.1  Generalities about surfaces ...... ....... .... 210
                       7.5.2  The Douglas-Courant-Tonelli method ....... .... 213
                       7.5.3  Nonparametric minimal surfaces ... ....... .... 213
                   7.6  Chapter 6: Isoperimetric inequality ...... ....... .... 214
                       7.6.1  The case of dimension 2 ........ ....... .... 214
                       7.6.2  The case of dimension n ........ ....... .... 217
                   Bibliography                                                  219

                   Index                                                         227
   3   4   5   6   7   8   9   10   11   12   13