Page 132 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 132

Sec. 4.8   Runge-Kutta Method                                  119

                                       TABLE 4.8-1  COMPARISON OF METHODS FOR EXAMPLE 4.8-1
                                       Time t  Exact Solution  Central Difference  Runge-Kutta
                                         0        0             0             0
                                         0.02     0.00492       0.00500       0.00492
                                         0.04     0.01870       0.01900       0.01869
                                         0.06     0.03864       0.03920       0.03862
                                         0.08     0.06082       0.06159       0.06076
                                         0.10     0.08086       0.08167       0.08083
                                         0.12     0.09451       0.09541       0.09447
                                         0.14     0.09743       0.09807       0.09741
                                         0.16     0.08710       0.08712       0.08709
                                         0.18     0.06356       0.06274       0.06359
                                         0.20     0.02949       0.02782       0.02956
                                         0.22    -0.01005      -0.01267      -0.00955
                                         0.24    -0.04761      -  0.05063    -0.04750
                                         0.26    -0.07581      -0.07846      -0.07571
                                         0.28    -0.08910      -0.09059      -0.08903
                                         0.30    -0.08486      -0.08461      -0.08485
                                         0.32    -0.06393      -0.06171      -0.06400
                                         0.34    -0.03043      -  0.02646    -0.03056
                                         0.36     0.00906       0.01407       0.00887
                                         0.38     0.04677       0.05180       0.04656
                                         0.40     0.07528       0.07916       0.07509
                                         0.42     0.08898       0.09069       0.08886
                                         0.44     0.08518       0.08409       0.08516
                                         0.46     0.06463       0.06066       0.06473
                                         0.48     0.03136       0.02511       0.03157

                                 values  for  the  central  difference  and  the  Runge-Kutta  methods  compared  with  the
                                  analytical solution.  We see that the  Runge-Kutta method gives greater accuracy than
                                  the  central  difference  method.

                                  Although  the  Runge-Kutta  method  does  not  require  the  evaluation  of
                             derivatives beyond  the  first,  its  higher  accuracy  is  achieved  by  four  evaluations  of
                             the  first  derivatives  to  obtain  agreement  with  the  Taylor  series  solution  through
                             terms of order h‘^.  Moreover, the versatility of the  Runge-Kutta method is evident
                             in  that  by  replacing  the  variable  by  a  vector,  the  same  method  is  applicable  to  a
                             system  of  differential  equations.  For  example,  the  first-order  equation  of  one
                             variable  is
                                                         i   =f { x , t )

                             For  two variables,  x  and  y,  as  in  this example,  we  can  let  2  =  {')  and  write  the
                             two first-order equations  as

                                                                  =  F ( x , y j )
   127   128   129   130   131   132   133   134   135   136   137