Page 163 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 163

150                  Systems with Two or More Degrees of Freedom   Chap. 5
                              FORTRAN PROGRAM

                                   J      TIME     DISPL.  X,  cm  DISPL.  Y,  cm
                                   27    0.2600     16.813269      26.109001
                                   28    0.2700     15.439338      21.370152
                                   29    0.2800     13.723100      17.377266
                                   30    0.2900     11.644379      14.458179
                                   31    0.3000     9.247756       12.733907
                                   32    0.3100     6.643715       12.107629
                                   33    0.3200     3.997202       12.294546
                                   34    0.3300     1.505494       12.886645
                                   35    0.3400    -0.630690       13.439858
                                   36    0.3500    -2.237630       13.566913
                                   37    0.3600    -3.195051       13.018113
                                   38    0.3700    -3.453777       11.734618
                                   39    0.3800    -3.041385       9.863994
                                   40    0.3900    -2.054909        7.734994
                                   41    0.4000    -0.642020        5.796249
                                   42    0.4100     1.025759        4.530393
                                   43    0.4200     2.782778        4.359870
                                   44    0.4300     4.496392        5.562246
                                   45    0.4400     6.086507        8.211138
                                   46    0.4500     7.533995       12.154083
                                   47    0.4600     8.876582       17.031736
                                   48    0.4700    10.193198       22.335049
                                   49    0.4800    11.579966       27.489933
                                   50    0.4900    13.122614       31.953781
                                   51    0.5000    14.870770       35.305943


                       5.6  VIBRATION ABSORBER
                              As  a  practical  application  of  the  2-DOF  system,  we  can  consider  here  the
                              spring-mass  system  of  Fig.  5.6-1.  By  tuning  the  system  to  the  frequency  of  the
                              exciting force  such  that   =  k 2/ m 2,  the  system  acts  as  a vibration  absorber  and
                              reduces the motion of the main mass   to zero.  Making the substitution
                                                      T   /c 1   2    ^2
                                                     (0 11
                                                                     ni2
                              and  assuming the  motion  to be  harmonic,  the  equation  for the  amplitude   can
                              be shown to be equal  to


                                           ^1^1                  I ^22.
                                                                                          (5.6-1)
                                             0         k-,
                                                   1  +   —        1  -  ( - ) 1
                                                            1^11  /    [(Oil I
                              Figure  5.6-2  shows  a  plot  of this  equation  with  ¡jl  =   m 2/m ,  as  a  parameter.  Note
   158   159   160   161   162   163   164   165   166   167   168