Page 257 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 257

244                                    Computational Methods   Chap. 8

                                  an  arbitrary  test  column:
                                                                  0.5'
                                                               (  - 0.2
                                                                  1.0  .
                                  The  first  iteration  then  becomes
                                          0  - 4 . 3 2  - 3 . 0 ‘  i  - 2 . 1 3 6 ]  1  - 0 . 8 0 1
                                                            '’ -^'1
                                          0    1 . 6 7  0  i    - 0 . 2    =   j'  - 0 . 3 3 4  =   2 . 6 6 6    - 0 . 1 2 5
                                          0    1 . 6 7  3 . 0  1.0  [   2 . 6 6 6   j  (   1 .0 0
                                  With  this  normalized  column,  the  second  iteration  becomes
                                          0  - 4 . 3 2  - 3 . 0  (  - 0 . 8 0 1   \  1  - 2 . 4 6 )  1  - 0 . 8 8 1
                                          0    1 . 6 7  0  - 0 . 1 2 5    =   < - 0 . 2 1  =   2 . 7 9    - 0 . 0 7 5
                                          0    1 . 6 7  3 . 0  i    1 .0 0   j  i   2 . 7 9 j  i   1 .0 0
                                  The  third  iteration  gives
                                          0  - 4 . 3 2  - 3 . 0 ‘ 1  - 0 . 8 8 1   ]  (  - 2 . 6 8   ]  1  - 0 . 9 3 3
                                          0   1 . 6 7  0  - 0 . 0 7 5    =   ^ - 0 . 1 2 5  =   2 . 8 7    - 0 . 0 4 4
                                          0   1 . 6 7  3 . 0  i    1 .0 0   j  i   2 . 8 7   j  i   1 .0 0
                                  After  a  few  more  iterations,  the  convergence  is  to
                                                                  1.0
                                                            3 . 0    <  0
                                                                  1.0
                                  Thus,  the  eigenvalue  and  eigenvector  for  the  second  mode  are
                                                     A    3/c             r r
                                                     At =  —^—  =  3.0   ■

                                                         (x)^m
                                                          -  1.0
                                                    4>2-  {   0
                                                            1.0

                                       For  the  determination  of the  third  mode,  we  impose  the  condition  Cj  =  C2  =  0
                                  from  the  orthogonality  equation:
                                               3
                                          c ,   =   Y .   =   4 ( 0 . 2 5 ) X |   +   2 ( 0 . 7 9 ) a-2  +   1 ( 1 . 0 ) a:3  =   0
                                              / - 1

                                          c,  =          =  4 ( - I . 0 ) a:|  +  2 (0 )t 2  +  1(1.0)a:3  =  0
                                              / = 1
                                  From  these  two  equations,  we  obtain
                                                      X ,   =   0 . 2 5 x ,    X t  =   - 0 . 7 9 x 3
   252   253   254   255   256   257   258   259   260   261   262