Page 265 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 265

252                                    Computational Methods   Chap. 8

                              Solution:  The  transformation  matrix is  found from
                                                                        U'^'U = K
                                                  Wi,  0   0  "  «11  «12  «13  4   -1   o '
                                                  ^12  U22  0   0  « 22  « 23  -1    2  -1
                                                  ^13  «23  « 3 3  0  0  «33    0   -1    1
                                                   ,
                                        wfl       W jW 12        u  11«13       4   -1   o '
                                       ^1,^12   («11  +      ( u 12«13 +  « 2 2 «23)  =  -1  2  -1
                                       Mi iW,3  (^12^13  +  W23l’^22  )   ( «?3  + «ii  + «l3)_  0  -1  1
                                  By equating the  eorresponding terms on each  side,  U  is found:
                                                          2   -0.50    0
                                                     U =■■ 0   1.3228   -0.7559
                                                          0   0        0.6547

                                  For the  inverse of  U,  we  let  U  *=  [b^-] and  solve  the  equation
                                                                       i/f/  ‘  =  /
                                            2   -0.50    0      6,,   6 j2  6 i3  "1  0  o'
                                            0   1.3228  -0.7559  0   ¿?22  ¿>23 =  0  1  0
                                            0   0        0.6547  0   0   b..   0  0  1

                                  Again, equating the  terms of the  two sides, we  obtain
                                                              0.50  0.1889  0.2182
                                                     =  \b.^  =  0  0.7559  0.8726
                                                               0     0    1.5275
                                  The dynamic matrix  A  using the  decomposed  stiffness matrix is

                                       A  =
                                            0.50   0     0     ■4  0  O' 0.50  0.1889  0.2182
                                         =  0.1889  0.7559  0   0  2  0  0    0.7559  0.8726
                                            0.2182  0.8726  1.5275  0  0  1  0  0    1.5275
                                            1.00   0.3779  0.4364'
                                         =  0.3779  1.2857  1.4846
                                            0.4363  1.4846  4.0476

                                  The  standard  form  is  now
                                                           [-A 7 + ^ ']y  =  0
                                  where  A =  k/co^m  and  X =  U~^Y.
   260   261   262   263   264   265   266   267   268   269   270