Page 264 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 264

Sec. 8.9   Cholesky Decomposition                              251


                                       Step 5:  For this simple problem,  the eigenvalues and  eigenvectors in  y  coordi­
                                  nates are found from  the  usual  procedure:
                                                     (0.6668  -  A)   0.4715
                                                                             0
                                                       0.4715   (1.8338  -A )
                                                              A^  -   2.50A  +  1.0  =  0
                                                               yi  ( 1)  0.3537 \
                                                   A,  =  2.0          1.000 /
                                                               >^2
                                                                  ( 2)
                                                                       -  2.8267 \
                                                   A,  =  0.50           1.000 /
                                                               i:)
                                       Step 6:  Eigenvalues are not changed by the  transformation of coordinates.
                                  The  eigenvectors  in  the  original  x  coordinates  are  found  from  the  transformation
                                  equation.
                                                     = U'Y

                                                       "0.5774  0.4083" "0.3537   - 2.8267"
                                                <f>(x)  0     1.2249  1.000  1.000
                                                       "0.6125  -1.22381   r0.50  -1.00
                                                     —  1.2249  1.2249  =  1.00  1.00

                                                          ( 1)  0.50
                                                                1.00
                                                          (2)
                                                                - 1.00
                                               4>2(x)            1.00

                              Example 8.9-2
                                  Figure 8.9-1  shows  a 3-DOF model of a building for which the  equation of motion  is

                                                    4  0  O’     4  -1    0 ]'      '0
                                                    0  2  0  +  -1   2   -1       =  { 0

                                            - ( t  )
                                                    0  0  1    .  0       1J l i l M o ,
                                  Reduce  the equation  to the standard form by decomposing the stiffness matrix.
                                                    m

                                                   Zm



                                                   4m
                                                        3A
                                                                     Figure 8.9-1.
   259   260   261   262   263   264   265   266   267   268   269