Page 271 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 271

258                                    Computational Methods   Chap. 8

                                             ;d  to  1.0,

                                                  ■-0 .9 4 0  0.225  0.259'
                                                   -0.045  0.707  -0 .8 7 2  from
                                                     1.00  1.00   1.00
                                                  mode 2  mode  1  mode 3
                                                   -1 .0  0.25  0.25'
                                                    0    0.79  -0 .7 9  from the computer
                                                     1.00  1.00  1.00

                       Cho I esk I - Jacob I  Program   A  = (o^m /k   Cho I msk I -Jacob i  Program   A  =  k /cj^m
                       Matrix  IM3                           Matrix  [K1
                           4000E+01    .OOOOE-i-00  .OOOOE+00     4000E+01    1000E+01   .OOOOE-HX)
                           OOOOE+00    TOOOE+Oi    nnooE-t-00   -  IOCiOE+01   2000E+01  -  1000E+01
                           .OOOOE+00   .OOOOE+00  . 10CWE+01     .OOOOE+00  '.1000E+01   . lOOOE^OI
                       Matrix  [KJ                           Matrix  IM)
                           4000E+01    1000E+01   .OOOOE+00       4000E+01    OOOOE+00   .OOOOE+00
                           1000E+01    .2000E+01   . 1000E+01     OOOOE-KX)  .2000E+01   ■ OOOOE+00
                           OOOOE+00   -  1000E+01  1000E+01       OOOOE+00    OOOOE-i'OO  1000E+01
                       0*jnamic  matrix  [fl]                Dynamic  matrix  CRl
                           . 1000E+01   -3536E+00   .OOOOE-fOO   . lOOOE+01   378CE+00   .4364E+00
                          - .3536E+00   . 1000E+01   7071E+00     3780E+00   . 1286E+0I   . 1485E+01
                           OOOCE+00   -.7071E+00  . 1000E+01     •4364E+00   . 1485E+01  .4048E-i'01
                       Eigmnoaliws  arc:                     Eigenvalues  ore;
                            1791E+01   . 1000E^•01  .2094E+00    .4775E+01    IOOOE‘t'01  .5585E+00
                       Eigenvectors  of  Ifll  are;          Eigenvectors  of  [R]  are:
                           3162E+00    .8944E+00  .3162E+00      . 1447E+00   -.8944E+00  .4233E+00
                          -.7071E+00   .2551E-05  .7071E+00      .4006E+00   -.3382E+00  .8515E+00
                           6325E+00   -  4472E+00  6324E-^00      9047E-MX)   2928E-^00   3094E+00
                       Rctual  eigenvectors  are;            Rctual  eigenvectors  are;
                            1925E+00   -  7071E+00  1924E+00      1925E+00  -  7070E-HD0   1926E-K)0
                          -.6086E+00   -.2852E-05  .6086E+00     .6086E'»'00  -.5306E-04   .6086E‘i’00
                           .7698E-I-00   .7071E+00  .7698E-K)0   .7698E+00   .7072E+00   .7698E+00
                                                      Figure 8.10-2.

                                       The  computer  printout  for  CHOLJAC  is  shown  in  Fig.  8.10-2,  first,  with  M
                                  decomposed  and,  second, with  K  decomposed  by interchanging  M and  K.  Thus,  the
                                  eigenvalues in  the  two  sets of calculations  are  reciprocally related.
                                       Figure  8.10-3  is  a  printout  including  intermediate  results  for  the  problem
                                  carried  out  by  the  computer.  One  can  compare  the  results  of  the  hand  calculation
                                  down  to  the  dynamic  matrix  A  =  UKU.  The  eigenvectors  shown  in  the  next  two
                                  groups  are  the  result  of  several  iterations.  The  eigenvectors  of  A  are  orthonomial
   266   267   268   269   270   271   272   273   274   275   276