Page 275 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 275

262                                    Computational Methods   Chap. 8


                                  Program CHOLJAC (Choleski-Jacobi).  CHOLJAC has three options:
                                  1.  Determines  the  three  matrix products  M ^ K.  The  user  inputs  the  n  X n
                                    matrices  M and  K.
                                  2.  Determines  the  eigenvalues  and  eigenvectors  of  M -  kL  It  uses  Jacobi
                                    diagonalization.
                                  3.  Determines the eigenvalues and eigenvectors of M -  AA^. It uses Choleski
                                    decomposition  and Jacobi diagonalization.


                                                       REiFERENCES

                              [1]  Crandall,  S.  H.  Engineering Analysis,  A Survey of Numerical Procedures.  New York:
                                  McGraw-Hill Book Company,  1956.
                              [2]  Ralston,  A.,  and  Wilf,  H.  S.  Mathematical Methods for Digital Computers,  Vols.  I
                                  and  II, New York: John Wiley & Sons,  1968.
                              [3]  Salvadori,  M.  G.,  and  Baron,  M.  L.  Numerical Methods in Engineering.  Englewood
                                  Cliffs, N.J.:  Prentice-Hall,  1952.
                              [4]  Bathe,  K.-J.,  and  Wilson,  E.  L.  Numerical  Methods  in  Finite  Element  Analysis.
                                  Englewood Cliffs, N.J.:  Prentice-Hall,  1976.
                              [5]  Meirovitch,  L.  Computational  Methods  in  Structural  Dynamics.  Rockville,  MD:
                                  Sijthoff & Noordhoff,  1980.


                                                        PROBLEMS

                              8-1  For the system shown  in  Fig. P8.1, the flexibility matrix is
                                                              0.5   0.5  0.5
                                                       [a]  =  T  0.5   1.5  1.5
                                                              0.5   1.5  2.5
                                  Write  the  equation  of motion  in  terms  of the  flexibility  and  derive  the  characteristic
                                  equation
                                                          -   5A^  4-  4.5A  - 1   =  0
                                  Show agreement with the characteristic equation in Sec. 8.1 by substituting A =  1/A  in

                                  the foregoing equation.
                                 | —AAAAr-| 2m j-AAAAr-|  rn  AAAAr-[~^^

                                           *"-^1     ^^2        ^^^3   Figure P8.1.

                              8-2  Use  the  computer  program  POLY  to  solve  for  A,  and  </>,,  and  verify  the   and  (/>  ,
                                  given in  Sec. 8.1.
   270   271   272   273   274   275   276   277   278   279   280