Page 369 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 369

356             Mode-Summation Procedures for Continuous Systems   Chap. 11


                                                          A





                                                              |y///
                                                              X
                                                              +

                                                      TT7TT
                                                          W          Figure  11.3-3.

                              Solution:  The problem  is approached  in a manner similar to that of the  direct problem  in
                                  which, in place of   and  co^, we use   and  il,. We now relieve the constraints at the
                                   supports  by  introducing  opposing  forces  -F(a)  and  -M(a)  equal  to  kyia)  and
                                  KyXal
                                       To carry out  this problem  in  greater detail, we  start with  the  equation

                                                    Q i

                                  which  replaces  Eq.  (11.3-8).  Letting  Djico) = M ,n f[l  -   (co/O,)^],  the  displacement
                                   at  jc  =   is

                                                              -F{a)^f(a)  -  M{a)^'(a)^,{a)
                                           y{a)  =   («)'?,  =  E
                                                                        D,{(o)
                                  We  now replace  -F(a) and  -M(a) with  ky(a) and  Ky'(a) and write
                                                        ky{a)^f{a)  + Ky'{a)<t>'^(a)^^(a)
                                                y(a)  =  E
                                                       i           D,(a>)
                                                         fcy(a)«I>;(a)<l>,(«)  + Ky'{a)^',^(a)
                                                y'{a)  =  E
                                                                   D,(a>)
                                   These  equations  can  now be rearranged as


                                              y(a) 1 - ^ E      = y '(« )^ E  A(o>)

                                                                       i - ^ E
                                                                            r   D,{co)
                                   The  frequency equation  then  becomes


                                         i - ^ E       1 -  /iE      -  kK             =  0
                                              r             r   A ( ^ )       D,{w)
   364   365   366   367   368   369   370   371   372   373   374