Page 377 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 377

364             Mode-Summation Procedures for Continuous Systems   Chap. 11


                                  Rearrange Eq. (11.5-7) by shifting columns  1  and  6 to the  right side:
                                             1  0    0    0 “ iP2\  ' - 1  -r
                                             0  1    1    1  r -M  -  0    0             (11.5-8)
                                             3  0   - 1  - 4  1      - 2   0
                                             6  0    0   12          - 2   0
                              In  abbreviated  notation,  the preceding equation  is
                                                     [^]{P2-5)  =  [Q]{(1i.6}
                              Premultiply by [i]^'  to obtain
                                                    {Pl-i)  =
                              Supply the  identity   and       and write

                                                       {P\ -6}  ^
                              This constraint  equation  is now  in terms of the  generalized coordinates  q^  and  ¿7^
                              as follows:
                                             'iV      1        0
                                             Pi      - 1     - 1
                                             Pi       2        4.50     = [C]            (11.5-9)
                                            ‘  Pa    -2.333  -5.0  \ Q . j     •J6
                                             Pi       0.333    0.50
                                            W         0        1
                                  Returning to the  Lagrange equation  for the  system, which  is
                                                               Fi
                                                   ml[m]{p]  +          =  0            (11.5-10)

                              substitute  for [p]  in terms of {q}  from the constraint equation (11.5-9)
                                                ml[m][C][q}  +  ^{ k] [C] [q }  =
                                                               P
                              Premultiply by the  transpose  [C]':
                                                               E7,
                                                                 [C]'[k][C]{q)  = 0     (11.5-11)
                                                               P
                                  Comparing  Eqs.  (11.5-10)  and  (11.5-11),  we  note  that  in  Eq.  (11.5-10),  the
                              mass  and  stiffness matrices  are  6 x 6 [see  Eqs.  (11.5-5) and  (11.5-6)], whereas  the
                              matrices  [C]'[m][C]  and  [C]'[/c][C]  in  Eq.  (11.5-11)  are  2 x 2 .   Thus,  we  have
                              reduced  the  size of the  system from a 6 x 6 t o a 2 x 2 problem.
                                  By letting [q]  =  -oj^iq],  Eq.  (11.5-11) is in  the  form
                                                  ■ «11  «12  El bn   b,2


                                            —COml                                       (11.5-12)
                                                   «21  «22       ^21  ^22 J  ^6
   372   373   374   375   376   377   378   379   380   381   382