Page 375 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 375

362             Mode-Summation Procedures for Continuous Systems   Chap. 11


                                  The  next step  is to calculate  the  generalized mass from the  equation
                                                         rl
                                                   m/j  =  /  m{x)4>,{x)<t>j{x) dx
                                                        •'()
                              For subsection  (D, we have

                                          mil  =  f    cbc  =  i ^ ( y )   dx  =  0.20 ml

                                          m ^2  ""  f ^4>\4>2^  f   j ]   ^   ^  0.166m/  =  m 2i
                                                '
                                               *()          •'()  ^  ^  '
                                               j
                                          mil  = ^m4>(f>2  ^   ^  ^ ^ ( t )  ^   ^  0.1428m/
                                                    2
                              The generalized mass for subsection  (2)  is computed  in a similar manner using  (/>3
                              to  (/>y
                                                      m33  =  1.0 m/
                                                      m34  =  0.50m/  =
                                                          =  0.20 m/ =
                                                      m44  =  0.333m/
                                                      m43  =  0.166m/  =
                                                      me    0.1 1 1 m/
                                                          =  1.0m/
                              Because  there  is  no  coupling  between  the  longitudinal  displacement  U2  and  the
                              lateral displacement  n>2,   ""  ^^64   ^65  ""  0*
                                  The  generalized stiffness  is found from the  equation
                                                        /c,^.  =  f  W :'c/>; dx
                                                            •'()
                              Thus,
                                                                              £7
                                                        '
                                                 =  E lj‘^4>\4>’[ dx  =    =  4 |  3




                                              All  ~  1 2 |i
                                                      FI
                                              k,,  =  28.8-^
                              All other  /c,,  are zero.
   370   371   372   373   374   375   376   377   378   379   380