Page 520 - Thomson, William Tyrrell-Theory of Vibration with Applications-Taylor _ Francis (2010)
P. 520

Appen. C.5   Cholesky Decomposition                            507


                              expressions  for   a n   n   X   n  m atrix:
                                   M 22  —  ^99  ^19
                                         22
                                   ^33  ~   ^33  ^13  ^23
                                   «44  =    -   M?4  -   M^4  -   M^4




                                   «//  =   1^ »  -   E  «í;j    /  =    2, 3 , 4 , . . . ,  rt

                                   ^23  ^    (^23  “   ^  12^ 13)
                                         ^22

                                   ^24  “   7¡  (^24  ~   ^ 12^ 14)
                                         ^22
                                         ^33
                                   M 3 4   =   ~    ( / C 3 4   —   W 1 3 W 1 4   —   W 2 3 W 2 4 )



                                    /
                                   Wy  =  77-(^0  -   E  W//W;y]   /  =  2 , 3 , 4 , . . . ,  n;;  =  /  +  1 ,/  +  2, . . . , «

                              Inverse of U

                              The  inverse  of the  triangular m atrix   U  can  be  found  from  the  equation:
                                          U                   U~
                                       (know n)         (unknow n  inverse)      (unit  matrix)
                                   U],  «12  «13  « 14-     Vi2  i’lS  Vu       '1  0  0  0 ‘
                                   0   ^22  «23  «24   7 "       V23  «24       0   1  0  0
                                                        V21'' - i ’22
                                                              '
                                   0    0   «33  «34    V31  V'32'   ^34        0   0  1  0
                                   0    0    0  «44     V41  V42  I'«''^V44 _   0   0  0  1
                              Starting  the  m ultiplication  of the  two  m atrices  on  the  left  from  the  bottom  row of
                              U   with  the  colum ns  of   u¿j  and  equating  each  term  to  the  unit  matrix,  it  w ill  be
                              found  that   v¿j  =   0  for  i  > \  so  that  the  inverse  m atrix   is  also  an  upper
                                                    j
                              triangular  matrbc.  The  following  sequence  of  m ultiplication  w ill  then  yield  the
                              following  results.
                                  Row   4  X  colum ns  1,  2,  3,  and  4:
                                                                 1
                                                           l^AA
                                                                Í 4 4
   515   516   517   518   519   520   521   522   523   524   525