Page 108 - Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors
P. 108
Rod bundle and pool-type experiments in water serving liquid metal reactors 81
Modarres-Sadeghi, Y., Paı ¨doussis, M.P., Semler, C., Grinevich, E., 2008. Experiments on ver-
tical slender flexible cylinders clamped at both ends and subjected to axial flow. Philos.
Trans. R. Soc. Lond. A 366 (1868), 1275–1296.
Padmakumar,G.,Vinod,V.,Pandey,G.K.,Krishnakumar,S.,Chandramouli,S.,Vijaykumar,G.,
Prasad, R.R., Mourya, R.K., Madankumar, P., Shanmugasundaram, M., Ramakrishna, V.,
2013. SADHANA facility for simulation of natural convection in the SGDHR system of
PFBR. Prog. Nucl. Energy 66, 99–107.
Paı ¨doussis, M.P., 1966. Dynamics of flexible slender cylinders in axial flow part 2. Experi-
ments. J. Fluid Mech. 26 (4), 737–751.
Paı ¨doussis, M.P., 2004. Fluid-Structure Interactions. Academic Press, London.
Pauw, B.D., Vanlanduit, S., Tichelen, K.V., Geernaert, T., Chah, K., Berghmans, F., 2013.
Benchmarking of deformation and vibration measurement techniques for nuclear fuel pins.
Measurement 46 (9), 3647–3653.
Pettigrew, M.J., Taylor, C.E., 1994. Two-phase flow-induced vibration: an overview. J. Press.
Vessel Technol. Trans. ASME 116 (3), 233–253.
Prasser, H.-M., B€ ottger, A., Zschau, J., 1998. A new electrode-mesh tomograph for gas-liquid
flows. Flow Meas. Instrum. 9 (2), 111–119.
Raffel, M., Willert, C., Wereley, S., Kompenhans, J., 2007. Particle Image Velocimetry:
A practical Guide. Springer, New York, NY.
Ridder, J.D., Doar e, O., Degroote, J., Tichelen, K.V., Schuurmans, P., Vierendeels, J., 2015.
Simulating the fluid forces and fluid-elastic instabilities of a clamped-clamped cylinder
in turbulent axial flow. J. Fluids Struct. 55, 139–154.
Roelofs, F., Shams, A., Pacio, J., Moreau, V., Planquart, P., van Tichelen, K., Di Piazza, I.,
Tarantino, M., 2015. European outlook for LMFR thermal hydraulics. In: Proc. 16th
Int. Topl. Mtg.Nuclear Reactor Thermal Hydraulics (NURETH-16), Chicago, IL, USA.
Rowe, D.S., 1973. Measurement of Turbulent Velocity, Intensity and Scale in Rod Bundle Flow
Channels (Ph.D. thesis). Oregon State University.
Rowe, D.S., Johnson, B.M., Knudsen, J.G., 1974. Implications concerning rod bundle crossflow
mixing based on measurements of turbulent flow structure. Int. J. Heat Mass Transf. 17 (3),
407–419.
Sato, H., Kobayashi, J., Miyakoshi, H., Kamide, H., 2009. Study on velocity field in a wire
wrapped fuel pin bundle of sodium cooled reactor. detailed velocity distribution in a
subchannel. In: Proc. 13th Int. Topl. Mtg. Nuclear Reactor Thermal Hydraulics
(NURETH-13).
Seale, W.J., 1979. Turbulent diffusion of heat between connected flow passages part 1: outline
of problem and experimental investigation. Nucl. Eng. Des. 54 (2), 183–195.
Shams, A., Roelofs, F., Komen, E.M.J., 2015. High-fidelity numerical simulation of the flow
through an infinite wire-wrapped fuel assembly. In: Proc. 16th Int. Topl. Mtg.Nuclear
Reactor Thermal Hydraulics (NURETH-16), Chicago, IL, USA.
Sinyavskii, V.F., Fedotovskii, V.S., Kukhtin, A.B., 1980. Oscillation of a cylinder in a viscous
liquid. Prikl. Mekh. 16, 62–67.
Spaccapaniccia, C., 2016. Experimental of Natural Internal Convective Flows. PhD thesis,
Universite’ Libre de Bruxelles, Belgium.
Spaccapaniccia, C., Planquart, P., Buchlin, J.M., Greco, M., Mirelli, F., Van Tichelen, K., 2015.
Experimental results from a water scale model for the thermal-hydraulic analysis of a HLM
reactor. NURETH-16, Chicago, IL, USA.
Spaccapaniccia, C., Planquart, P., Buchlin, J.M., 2017. Measurements Methods for the analysis
of Nuclear Reactors Thermal Hydraulic in Water Scaled Facilities. ANIMMA, Liege.