Page 198 - Bird R.B. Transport phenomena
P. 198

182  Chapter 6  Interphase Transport in Isothermal Systems

            1.0

            0.5


            0.2

            0.1 \
                   ч-/
        |   0.05        \
                   j
         о                 s
        I  0.02             s
                                                                            TurbulerIt
                             \
           0.01
                                                                          ::k/D  = 0.0 )4
                                     4                               1  •• • m Si  - *—0.C)0(31
           0.005                                       ft                       0.001
                                                                                O.OOC4
           0.002                                                          kcallys •*——4—^  нu..
                                                                               'ЛОС
                                            > ч                                      r
           0.001
                             10  3          10 4           10  5          10 6           10 7
                                         Reynolds number  Re = D<v>  p/fi
        Fig. 6.2-2.  Friction factor  for  tube flow  (see definition  of/in  Eqs. 6.1-2 and  6.1-3. [Curves  of  L. F. Moody,
        Trans. ASME, 66, 671-684  (1944) as presented in W.  L. McCabe and J. C. Smith, Unit Operations of Chemi-
        cal Engineering, McGraw-Hill, New York  (1954).]



                                                              2
                             which  is known  as the Blasius formula.  Equation 5.5-1  (with  2.5 replaced by  2.45 and  1.75
                             by  2.00)  is equivalent  to
                                           - y  = 4.0  log  ReV7  -  0.4  2.3  X  10 3  <  Re <  4  X  10 6  (6.2-13)
                                                       10
                                                             3
                             which  is known  as the Prandtl formula.  Finally, corresponding  to Eq. 5.5-2, we  have
                                                                                   5a)
                                                           where                                 (6.2-14)
                                              J  ^2/(a + i)             2 a{a  + \){a  + 2)
                                                                         a
                             and  a  = 3/(2  In Re). This has been found  to represent the experimental data well  for  3.07
                                                 6
                             X 10 3  <  Re <  3.23  X  10 . Equation 6.2-14 is called  the Barenblatt formula*
                                 A  further  relation, which  includes  the dashed  curves  for  rough  pipes  in Fig. 6.2-2,  is
                             the  empirical Haaland equation 5
                                                                                  4
                                                * * i
                                                            4_ (k/D\°' ~]
                                                       Гб.9
                                          1
                                                                                [
                                         —  =-3.6 log ф ^ — J       9  J   [4XlO <Re <10   8     (6.2-15)
                                                                                 0<k/D<0j 0.05
                                 2
                                  H. Blasius, Forschungsarbeiten des  Ver. Deutsch. Ing., no.  131  (1913).
                                  L. Prandtl, Essentials of Fluid Dynamics, Hafner, New York  (1952), p. 165.
                                 3
                                 4  G.  I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics, Cambridge University  Press
                             (1996),  §10.2.
                                 5
                                  S. E. Haaland, Trans. ASME,  JFE, 105, 89-90 (1983). For other empiricisms  see D. J. Zigrang  and
                             N.  D. Sylvester, AIChE  Journal, 28, 514-515 (1982).
   193   194   195   196   197   198   199   200   201   202   203