Page 303 - Bird R.B. Transport phenomena
P. 303

Problems   287



      9A.1  Prediction  of  thermal  conductivities  of  gases  at  9A.3.  Estimation of  the  thermal conductivity  of  a dense
      low  density.                                    gas.  Predict the thermal  conductivity  of  methane at  110.4
      (a)  Compute  the  thermal  conductivity  of  argon  at  100°C  atm and  127°F by  the following methods:
      and  atmospheric  pressure,  using  the  Chapman-Enskog  (a)  Use  Fig.  9.2-1. Obtain  the necessary  critical  properties
      theory  and  the Lennard-Jones constants derived  from  vis-  from  Appendix  E.
      cosity  data. Compare your  result  with  the observed  value  1  (b)  Use the Eucken  formula  to get  the thermal  conductiv-
               7
      of506xKT cal/cm-s-K.                             ity  at  127°F  and  low  pressure.  Then apply  a pressure  cor-
      (b)  Compute the thermal conductivities  of NO and CH  at  rection  by  using  Fig.  9.2-1.  The  experimental  value  2  is
                                                  4
      300K  and  atmospheric  pressure  from  the  following  data  0.0282 Btu/hr- ft -F.
      for  these conditions:                           Answer: (a) 0.0294 Btu/hr  •  ft  • F.
                   7
             fju  X  10  (g/cm  • s)  C  (cal/g-mole  •  K)  9A.4.  Prediction  of  the  thermal  conductivity  of  a  gas
                                 p
                                                       mixture.  Calculate the thermal conductivity  of  a  mixture
                  1929              7.15
                                                       containing  20  mole  % CO  and  80  mole  % H  at  1  atm
                                                                             2               2
      CH  4       1116              8.55               and  300K.  Use  the  data  of  Problem  9A.2  for  your  cal-
                                                       culations.
      Compare your  results  with  the experimental  values  given  Answer: 2850 X 10  cal/cm  • s • К
                                                                     7
      in Table  9.1-1.
                                                       9A.5.  Estimation  of  the  thermal conductivity  of  a pure
      9A.2  Computation  of  the  Prandtl numbers  for  gases  at  liquid.  Predict  the  thermal  conductivity  of  liquid  H O  at
      low  density.                                                                              2   6
                                                       40°C  and  40  megabars  pressure  (1  megabar  =  10
      (a)  By  using  the  Eucken  formula  and  experimental  heat  dyn/cm ).  The  isothermal  compressibility,  (l/p)(dp/dp) ,
                                                             2
                                                                                                    T
      capacity  data,  estimate  the  Prandtl number  at  1 atm  and  is  38  X  10~ 6  megabar  1  and  the  density  is  0.9938  g/cm .
                                                                                                    3
      300K  for  each  of the gases listed  in the table.  Assume  that C p  =  C . v
      (b)  For the  same  gases, compute  the  Prandtl number  di-  Answer: 0.375 Btu/hr •  ft  • F
      rectly  by  substituting  the following  values  of  the  physical
      properties  into the defining  formula  Pr  = С /л/к, and com-  9A.6.  Calculation of  the  Lorenz number.
                                        р
      pare the values  with  the results  obtained in (a). All  proper-  (a)  Application  of  kinetic theory  to the "electron gas"  in a
                                                           3
      ties are given at low  pressure  and  300K.      metal  gives for  the Lorenz number
             C  X  1СГ 3  /i, X 10 5  к                                  L =                   (9A.6-1)
              p
      Gas"   J/kg-K     Pa°s     W/m-К
                                                       in  which  к is  the  Boltzmann  constant and  e is  the  charge
      He       5.193    1.995    0.1546                on  the  electron.  Compute  L  in  the  units  given  under
      Ar       0.5204   2.278    0.01784               Eq. 9.5-1.
      H 2     14.28     0.8944   0.1789                (b)  The electrical  resistivity,  1 /k ,  of  copper  at  20°C  is
                                                                                   e
      Air      1.001    1.854    0.02614               1.72X  10~ 6  ohm  • cm.  Estimate  its  thermal  conduc-
      CO  2    0.8484   1.506    0.01661               tivity  in  W/m  • К  using  Eq.  9A.6-1,  and  compare
      H O      1.864    1.041    0.02250               your  result  with  the  experimental  value  given  in
       2
                                                       Table  9.1-4.
      " The entries in this table were prepared        Answers:  (a) 2.44  X  10~  volt /K ;  (b) 416 W/m  • К
                                                                         8
                                                                                2
                                                                             2
      from functions provided by Т. Е. Daubert,
      R. P.Danner, H. M. Sibul, С. С Stebbins,         9A.7c  Corroboration  of  the  Wiedemann-Franz-Lorenz
      J. L. Oscarson, R. L. Rowley, W. V. Wilding,     law.  Given  the  following  experimental  data  at  20°C  for
      M. E. Adams, T. L. Marshall, and N. A. Zundel,   pure  metals,  compute  the  corresponding  values  of  the
      DIPPR ® Data Compilation of Pure Compound
      Properties, Design Institute for Physical  Property  Lorenz number, L, defined  in Eq. 9.5-1.
      Data®, AIChE, New York  (2000).
                                                            J. M. Lenoir, W. A. Junk, and E. W. Comings, Chem. Engr.
                                                          2
                                                       Prog., 49, 539-542 (1953).
         1                                                3
           W. G. Kannuluik and E. H. Carman, Proc. Phys. Soc.   J. E. Mayer and M. G. Mayer, Statistical Mechanics, Wiley,
      (London), 65B, 701-704 (1952).                   New  York  (1946), p. 412; P. Drude, Ann. Phys., 1, 566-613 (1900).
   298   299   300   301   302   303   304   305   306   307   308