Page 304 - Bird R.B. Transport phenomena
P. 304

288   Chapter 9  Thermal Conductivity and the Mechanisms of Energy Transport

                                                       9A.10.  Thermal  conductivity  of  chlorine-air  mixtures.
                    6
      Metal    k  X 10 (ohm-cm)  к (cal/cm • s • K)
               e                                       Using  Eq.  9.3-17,  predict  thermal  conductivities  of  chlo-
                                                       rine-air mixtures at 297 К and 1 atm for  the following  mole
      Na            4.6               0.317
      Ni            6.9               0.140            fractions  of  chlorine:  0.25,  0.50,  0.75.  Air  may  be  consid-
      Cu             1.69             0.92             ered  a  single  substance,  and  the  following  data  may  be
                                                       assumed:
      Al            2.62              0.50
                                                       Substance"  /.(Pa •s)  fc(W/  i - K )  C (J/kg •K)
                                                                                            p
      9A.8.  Thermal  conductivity  and  Prandtl  number  of  a
      polyatomic gas.                                  Air        1.854  x 10"  5  2.614 X  1.001  X 10 3
      (a)  Estimate the thermal conductivity  of CH  at  1500K and  Chlorine  1.351  X 10"  5  8.960 X 10"  3  4.798  X 10 2
                                          4
      1.37  atm. The molar  heat capacity  at constant pressure 4  at
                                                       a  The entries in this table were prepared  from  functions  provided
      1500K is 20.71 cal/g-mole  •  K.
                                                       by T. E. Daubert, R. P. Danner, H. M. Sibul, С. С  Stebbins,
      (b)  What  is  the Prandtl number at the same pressure  and  J. L. Oscarson, R. L. Rowley, W. V. Wilding, M. E. Adams,
      temperature?                                     T. L. Marshall, and N. A. Zundel, DIPPR  ® Data Compilation of
                        4
      Answers: (a) 5.03  X  10~  cal/cm • s •  K;  (b)  0.89  Pure Compound Properties, Design Institute for Physical  Property
                                                       Data®, AlChE, New York (2000).
      9A.9.  Thermal  conductivity  of  gaseous  chlorine.  Use
      Eq. 9.3-15 to calculate the thermal conductivity  of  gaseous  9A.11.  Thermal  conductivity  of  quartz  sand.  A  typical
      chlorine. To do this you will need to use  Eq. 1.4-14 to esti-  sample  of quartz sand has the following  properties at 20°C:
      mate the viscosity, and will also need the following  values                                 e
      of the heat capacity:                            Component        Volume  fraction  к cal/cm • s  К
      T(K)               200   300   400   500   600   i = l: Silica         0.510        20.4  X 10" 3
      C p  (cal/g-mole  •  K)  (8.06)  8.12  8.44  8.62  6.74  i  = 2: Feldspar  0.063     7.0  X  10" 3
      Check to see how well the calculated values  agree with the  Continuous phase (i = 0) is one of the  following:
      following  experimental thermal conductivity data 5  (i) Water         0.427        1.42  X 10"  3
                                                       (ii) Air              0.427      0.0615 X  10"  3
                               5
      T(K)    p (mm Hg)   к X 10  cal/cm • s • К       Estimate the effective  thermal conductivity  of  the sand  (i)
                                                       when  it  is  water  saturated, and  (ii) when  it  is  completely
       198        50          1.31  ±  0.03            dry.
       275       220          1.90  ±  0.02
       276       120          1.93  ± 0.01             (a)  Use the following  generalization  of Eqs. 9.6-5 and 6:
                 220          1.92  ± 0.01
       363       100          2.62  ±  0.02                                                    (9A.11-1)
                 200          2.61  ±  0.02                        V       N
       395       210          3.04  ±  0.02                               I
       453       150          3.53  ± 0.03                                /=0
                 250          3.42  ±  0.02                                                    (9A.11-2)
       495       250          3.72  ±  0.07
       553       100          4.14  ±  0.04            Here N is the number  of solid phases. Compare the predic-
       583       170          4.43  ±  0.04            tion  for  spheres  (g^ = g 2  = £з  = I) with  the recommenda-
                 210          4.45  ±  0.08            tion of de Vries (#, = g 2  = \; g 3  = f).  3
       676       150          5.07  ±  0.10            (b)  Use  Eq.  9.6-1  with  к л  =  18.9  X  10~  cal/cm  •  s  •  K,
                 250          4.90  ±  0.03            which  is  the  volume-average  thermal  conductivity  of  the
                                                       two solids. Observed  values, accurate within about 3%, are
                                                                      3
                                                       6.2 and  0.58  X  10~  cal/cm • s • К for  wet  and dry  sand, re-
                                                       spectively. 6  The particles were believed  to be best  approxi-
          4  O. A. Hougen, К. М. Watson, and R. A. Ragatz, Chemical
      Process Principles, Vol. 1, Wiley, New York (1954), p. 253.
          5  Interpolated from  data  of E. U. Frank, Z. Elektrochem., 55,  6  The behavior  of partially wetted soil has been treated by
      636 (1951), as reported in Nouveau  Traitede Chimie Minerale,  D. A. de Vries, Chapter 7 in Physics and Plant Environment,
                         ie
      P. Pascal, ed., Masson et C , Paris (1960), pp. 158-159.  W. R. van Wijk, ed., Wiley, New York (1963).
   299   300   301   302   303   304   305   306   307   308   309