Page 650 - Bird R.B. Transport phenomena
P. 650

630  Chapter  20  Concentration Distributions  with  More Than One Independent Variable

                                      r——       — —  m  •      —         ,  '
       Mass transfer -                 = 2                  —            ^ <
       out of stream      /0.72     / л      /^072           л =, / 2
                                      /
                    77/          /   >                              0.72
                 0.8
                      7
                                         K = 0
                      f
                 0.6  //     /  /ч J  /  transfer        >  "^ Mass transfer
                                         о mass
                    //
                                / /
                 0.4 I/   /  //                                into strea m
                 0.2f  //                    X  /
                   Y.        — —


                         0.8   1.6   2.4    3.2   4.0   4.8   5.6    6.4   7.2   8.0


       Fig.  20.2-3.  Velocity, temperature, and composition  profiles in the laminar boundary  layer on a
       flat plate with  mass transfer  at the wall  [H. S. Mickley,  R. C. Ross, A.  L. Squyers,  and  W.  E. Stew-
       art, NACA  Technical Note 3208 (1954).]



                                The  gradients  of  the  velocity, temperature,  and  composition  at  the  wall  are  obtainable
                             from  the derivative of  Eq. 20.2-43:
                                                        , Л, Ю                1
                                          П'(0,Л,Ю  =                                           (20.2-44)
                                                              rj = O  " expf-Л  f*f(lj,  K)dvjdr
                                                                    o                    1
                             Some  values  computed  from  this  formula  by  numerical  integration  are  then  given  in  Table
                             20.2-1.



       Table 20.2-1  Dimensionless  Gradients  of Velocity, Temperature, and Composition  in Laminar  Flow Along a Flat Plate"

       К         Л = 0.1  Л = 0.2  Л = 0.4  Л = 0.6  Л = 0.7  Л = 0.8  Л =  1.0  Л =  1.4  Л = 2.0  Л = 5.0
       -3.0       0.4491  0.7681   1.3722  1.9648  2.2600   2.5550  3.1451   4.3273  6.1064   15.0567
       -2.0       0.3664  0.5956   1.0114  1.4100  1.6070   1.8032   2.1945  2.9764  4.1524   10.0863
       -1.0       0.2846  0.4282   0.6658  0.8799  0.9829   1.0842   1.2836  1.6754  2.2568   5.1747
       -0.5       0.2427  0.3452   0.4999  0.6291  0.6890   0.7468   0.8579  1.0688  1.3707   2.8194
       -0.2       0.2165  0.2948   0.4024  0.4849  0.5213   0.5555   0.6190  0.7333  0.8861   1.5346
         0.0      0.1980  0.2604   0.3380  0.3917  0.4139   0.4340   0.4696  0.5281  0.5972   0.8156
         0.2      0.1783  0.2246   0.2736  0.3011  0.3108   0.3187   0.3305  0.3439  0.3496   0.3015
         0.5      0.1441  0.1657   0.1751  0.1701  0.1656   0.1603   0.1485  0.1240  0.09096  0.01467
         0.75     0.1032  0.1023   0.0840  0.0638  0.0549   0.0471   0.0340  0.0172  0.00571  0.0000152
         0.87574^   0       0        0       0       0        0        0       0        0        0
       " Taken from the following sources: E. Elzy and R. M. Sisson, Engineering Experiment Station Bulletin No. 40, Oregon State University,
       Corvallis, Or. (1967); H. L. Evans, Int. }. Heat and Mass Transfer, 3, 321-339 (1961); W. E. Stewart and R. Prober, Int. ]. Heat and Mass
       Transfer, 5,1149-1163 (1962) and 6, 872 (1963). More complete results, and reviews of earlier work, are given in these references.
       '' The value К = 0.87574 is the largest positive mass transfer  rate attainable in this geometry with steady laminar flow. See
       H. W. Emmons and D. С  Leigh, Interim Technical Report No. 9, Combustion Aerodynamics Laboratory, Harvard University (1953).
   645   646   647   648   649   650   651   652   653   654   655