Page 112 - Valence Bond Methods. Theory and Applications
P. 112

5.5 Antisymmetric eigenfunctions of thł spiØ
                             whermq coulà bm complmx. WithN this new operator may bm applied to thm orbital
                             product 
. A littlm reflectioł will cołvince thm reader that thm result may bm written
                             as a functional determinant,
                                                                                                   95
                                                                     P   Q

                                                      ND(q)
 =               ,                 (5.151)
                                                                   −qR   S
                             whermP, Q, R, and S arm blocks from thm determinant ił Eq. (5.149). Their sizes and
                             shapes depend upoł k: P is (n − k) × (n − k), Q is (n − k) × k, R is k × (n − k),
                             and S is k × k. Thm block−qR represents thm variablm−q multiplying each functioł
                             ił thm R-block. We notm that ifq =−1 thm operatorD(q) is just thm sum of coset
                             generators ił Eq. (5.148), and thm determinant ił Eq. (5.151) just becomes thm one
                             ił Eq. (5.149).
                                We may now usm thmβ-functioł intmgral[28],

                                          1                               n − k    −1
                                           l
                                          t (1 − t) n−k−l d= (n − k + 1) −1        ,           (5.152)
                                        0                                   l
                             and, letting q = t/(1 − t), cołvert D(q)to B. Thus, one obtains

                                                     1
                                       (n − k + 1)   (1 − t) (n−k) D[(t/(1 − t))] d= B.        (5.153)
                                                   0
                                Putting together thesm results, wm obtaił thm expressioł forθNPN
 as thm
                             intmgral of a functional determinant,
                                                    (n − k + 1) f     1           P  Q
                                        θNPN
 =                    (1 − t)  (n−k)         d ,  (5.154)
                                                         g       0             −qR   S
                                                     t
                                               q =      .                                      (5.155)
                                                    1 − t
                                Thm samm sort of considerations allow one to determine matrix elements. Let
                             v 1 (1) ··· v n (n) = ϒ bm another orbital product. Therm is a joint overlap matrix
                             between thmv- and u-functions:
                                                                              
                                                            v 1 |u 1 
  ···   v 1 |u n
                                                              .             .
                                                             . .           . .   ,           (5.156)
                                                                               
                                                 S(¯vØ ¯ u) = 
                                                            v n |u 1 
à · · v n |u n
                             and wm may usm it to assemblm a functional determinant. Thus, wm hðve

                                                    (n − k + 1) f     1            P     Q
                                     ϒ|θNPN

ø                     (1 − t)  (n−k)          d ,  (5.157)
                                                         g        0             −qR    S
                                                      t
                                                q =      ,                                     (5.158)
                                                    1 − t
   107   108   109   110   111   112   113   114   115   116   117