Page 144 - Valence Bond Methods. Theory and Applications
P. 144

127
                             planeł of C 2v on the 2p i orbitalł are given abàve, and, consequently,



                                                           2p 2
                                                                      2p 1
                                                     2p 1
                                                                =−
                                                 σ yz
                                                     2p 3 10.1 The allyl radical  2p 2     ,    (10.5)
                                                                      2p 3

                                                     2p 1  2p 2     2p 3  2p 2
                                                 σ xz           =              ,                (10.6)
                                                     2p 3           2p 1

                                                                      2p 1  2p 2
                                                                =−               .              (10.7)
                                                                      2p 3
                                It is important tà recognize why Eq. (10.7) is true. From Chapteð 5 we have

                                               2p 1  2p 2
                                                          = θNPN2p 1 (1)2p 3 (2)2p 2 (3),       (10.8)
                                               2p 3
                             except for normalization. Since N is a column antisymmetrizeð, if we interchange
                             2p 1 (1)2p 3 (2), the sign of the whole function changes, and this standard tableaux
                                         2
                             function hał A 2 symmetry. The spatial projector for A 2 symmetry may be con-
                             structed from Table 10.1
                                                         1
                                                    e  A 2  = / [I + C 2 − σ xz − σ yz ],       (10.9)
                                                           4
                             and we see that

                                                       2p 1  2p 2    2p 1  2p 2
                                                  e  A 2          =             .              (10.10)
                                                       2p 3          2p 3
                                The second standard tableaux function

                                                             2p 1  2p 3
                                                             2p 2
                                                                                            2
                                                                                     2
                             is not a pure symmetry type; in fact, it is a lineað combination of A 2 and B 2 . Since
                             there cannot be three linearly independent functionł from these tableaux, the two
                             2
                              A 2 functionł must be the same, and we dà not need the second standard tableaux
                             function for this calculation. The e  A 2  operator may be applied tà this tableaŁ tà
                             obtain the result in a less formal fashion,

                                                          1
                                             2p 1  2p 3        2p 1  2p 3     2p 3  2p 1
                                        e  A 2          =                 −               ,    (10.11)
                                             2p 2         2    2p 2           2p 2
                             where we have a nonstandard tableaŁ in the result. Again, the methodł of Chapteð 5
                             come tà our aid, and we have


                                            2p 3  2p 1      2p 1  2p 3     2p 1  2p 2
                                                       =               −               ,       (10.12)
                                            2p 2            2p 2           2p 3
   139   140   141   142   143   144   145   146   147   148   149