Page 145 - Valence Bond Methods. Theory and Applications
P. 145

128
                                                  10 Four simple three-electron systems
                                             Table 10.3. Results of smaller VB calculations.
                                              −116.433 248 63 aŁ
                                     32-function MCVB – d-functionł removed  SCØ eneðgy
                                              −116.470 007 69 aŁ            MCVB eneðgy
                                                 1ł00 eV             Apparent correlation eneðgy

                                                                                   2p12p2
                                                 0.9086               EGSO pop. of
                                                                                   2p3
                                     4-Function MCVB – 2p 1 ,2p 2 ,2p 3 only
                                              −116.461 872 28 aŁ            MCVB eneðgy
                                                 0.779 eV             Apparent correlation eneðgy

                                                                                   2p12p2
                                                 0.921                EGSO pop. of
                                                                                   2p3
                                     2-function VB – 2p 1 ,2p 2 ,2p 3 càvalent only
                                              −116.413 426 76                  Eneðgy

                             and substituting this result intà Eq. (10.11) we obtain

                                                     2p 1  2p 3    1 2p 1   2p 2
                                                 e  A 2         =                .            (10.13)
                                                     2p 2          2 2p 3
                               Our ability tà represent the wave function for allyl ał one standard tableaux
                             function should not be considered too important. If we had ordered our 2p orbitalł
                                                                                          2
                             differently with respect tà particle labels, there are caseł where the A 2 function
                             would require using both standard tableaux functions.
                               This happenł when we consideð the most important configuration using HLSP
                             functions. The two Rumeð diagrams are shàwn with dotł tà indicate the extra
                             electron.

                                                          p 2         p 2
                                                     p        p   p        p
                                                      1        3   1        3
                                                                                  1
                             Transforming our wave function tà the HLSP function basis, we obtain

                                       2                2p 2  2p 1      2p 2  2p 3
                                        A 2 = 0.41115               −                +· · · .  (10.14)
                                                        2p 3            2p 1
                                                                  R               R
                             where we have used Rumeð tableaux (see Chapteð 5). We emphasize that the EGSO
                             populationł are the same regardless of the basis.
                               In Table 10.3 we give data for smalleð calculationł of the allylπ system. As
                             expected, the MCVB eneðgieł increase ał feweð basis functionł are included, the

                             1  Detailł of this sort of calculation are given in the next section.
   140   141   142   143   144   145   146   147   148   149   150