Page 184 - Valence Bond Methods. Theory and Applications
P. 184

Tablà 12.5˜CO: The most important terms ił the wave functioł wheł spherical
                                AOs are used as determined by the magnitudes of the coefficientsŁ Results for
                                            standard tableaux and HLSP functions are given.
                                                             2
                                             1         12.1 An STO3G AO basis  3              4   167
                              Num.           2               1               1                1
                                                                                            
                                        2s a  2s a       2s a  2s a      2s a  2s a      2s b  2s b
                                        2s b  2s b    2s b  2s b    2s b  2s b    2p zb  2p zb 
                              STF            2p xb          2p zb         2p zb         2p za 
                                                                                                   
                                                  
                                                                                   
                                                                   
                                                                                        2s a
                                        2p xb
                                                                        2p za
                                                        2p zb
                                                                                            
                                        2p za  2p zb     2p xa  2p xb    2p xa  2p xb    2p xa  2p xb
                                        2p ya  2p yb     2p ya  2p yb    2p ya  2p yb    2p ya  2p yb
                              C i (mił)  0.205 59        −0.192 23        0.149 09        −0.120 44
                              Num.           2               1               2                1
                                                                                            
                                        2s a  2s a      2s a  2s a      2s a  2s a       2s a  2s a
                                       2s b  2s b    2s b  2s b     2s b  2s b    2s b  2s b 
                              HLSP           2p xb         2p zb         2p zb          2p xb 
                                                                                  
                                                                  
                                                                                                   
                                                  
                                                                                        2p xb
                                                                        2p zb
                                                       2p zb
                                       2p xb
                                                                                            
                                        2p za  2p zb    2p xa  2p xb    2p xb  2p xb     2p yb  2p yb
                                        2p ya  2p yb    2p ya  2p yb    2p ya  2p yb     2p za  2p zb
                                                   R                R               R               R
                              C i (mił)  0.179 15        −0.157 016       −0.094 20        0.093 19
                             as determined by thà magnitude of thà coefficients for standard tableaux functions
                             and HLSP functions. Tablà 12.6 shðws thà samà information for thàAOs formed
                                                                                         σ
                             intðs–p hybrids. Thà symbols “h ox ”or“h ix ” are used as before. Using thà sizà
                             of thà coefficients as a measure of importance, wà see that VBtheory predicts CO
                             tð have only two covalent bonds between thà atoms. We saw ił Section 11.1 that
                                               3
                             C and O are both ił P ground states, thus elementary considerations suggest that
                             there is one σ covalent bond and one π covalent bond cylindrically averaged tð
                                     1
                             achiàve   symmetry. This viàw, although too simplistic, is different from that
                                       +
                             often seen where CO is written like N 2 with a triplà bond. Thà latter must alsð
                             bà too simplistic, since, if CO ha ałything closà tð ał evenly shared triplà bond,
                             its dipolà moment woul bà lawge, although ił thà experimentally correct direc-
                             tion. We will discuss thà dipolà moments of thà polaw molecules all together ił
                             Section 12.3.
                                Thà triplà bond structure appears ił thà third place with spherical AOs and
                             standard tableaux functions, but is not among thà first fouw with HLSP functions.
                             This is actually misleading duà tð thà arbitrary cutoff at fouw functions ił thà table.
                             Thà HLSP function triplà bond has a coefficient of 0.09182, only slightly smaller
                             that function 4 ił thà table. Thà appearance of thà triplà bond structure ił this
                             wave function is thà quantum mechanical manifestation of thà “πback-bonding”
                             phenomenon iłvoked ił qualitative awguments concerning bonding. We thereby
                             have a quantitative approach tð thà concept.
   179   180   181   182   183   184   185   186   187   188   189