Page 121 - Vibrational Spectroscopic Imaging for Biomedical Applications
P. 121
Sample Pr eparation of Cells and T issue 97
44. E. Gazi, T. J. Harvey, P. Gardner, N. P. Lockyer, C. A. Hart, N. W. Clarke, and
M. D. Brown, “A FTIR Microspectroscopic Study of the Uptake and Metabolism
of Isotopically Labelled Fatty Acids by Metastatic Prostate Cancer,” Vibrational
Spectroscopy, 2008, in preparation.
45. J. Sule-Suso, D. Skingsley, G. D. Sockalingum, A. Kohler, G. Kegelaer, M. Manfait,
and A. J. El Haj “FT-IR Microspectroscopy as a Tool to Assess Lung Cancer Cells
Response to Chemotherapy,” Vibrational Spectroscopy, 38:179–184, 2005.
46. M. C. Krishna, G. Kegelaer, I. Adt, S. Rubin, V. B. Kartha, M. Manfait, and G.
D. Sockalingum, “Characterisation of Uterine Sarcoma Cell Lines Exhibiting
MDR Phenotype by Vibrational Spectroscopy,” Biochimica et Biophysica Acta,
1726:160–167, 2005.
47. P. Crow, B. Barrass, C. Kendell, M. Hart-Prieto, M. Wright, R. Persad, and M. Stone,
“The Use of Raman Spectroscopy to Differentiate Between Different Prostatic
Adenocarcinoma Cell Lines,” British Journal of Cancer, 92:2166–2170, 2005.
48. C. M. Krishna, G. D. Sockalingum, G. Kegelaer, S. Rubin, V. B. Kartha, and
M. Manfait, “Micro-Raman Spectroscopy of Mixed Cancer Cell Populations,”
Vibrational Spectroscopy, 38:95–100, 2005.
49. E, Gazi, J. Dwyer, P. Gardner, A. Ghanbari-Siahkali, A. Wade, J. Miyan, N. P.
Lockyer, et al., “Applications of FTIR-Microspectroscopy to Benign Prostate
and Prostate Cancer,” Journal of Pathology, 201:99–108, 2003.
50. T. J. Harvey E. Gazi, N. W. Clarke, M. D. Brown, E. C. Faria, R. D. Snook, and
P. Gardner, “Discrimination of Prostate Cancer Cells by FTIR Photo-Acoustic
Spectroscopy,” Analyst, 132:292–295, 2007.
51. T. J. Harvey, E. Gazi, R. D. Snook, N. W. Clarke, M. Brown, and P. Gardner,
“The classification of Prostate Cancer Cell Lines Using FTIR Microspectroscopy
and Multivariate Chemomectric Analysis,” Analyst, DOI: 10.1039/b903249e,
2009.
52. S. Z. Haslam and T. L. Woodward, “Host Microenvironment in Breast Cancer
Development: Epithelial-Cell–Stromal-Cell Interactions and Steroid Hormone
Action in Normal and Cancerous Mammary Gland,” Breast Cancer Research,
5:208–215, 2003.
53. C. Krafft, R. Salzer, S. Seitz, C. Ern, and M. Schieker, “Differentiation of Individual
Human Mesenchymal Stem Cells Probed FTIR Microscopic Imaging,” Analyst,
132:647–653, 2007.
54. A. D. Meade, F. M. Lyng, P. Knief, and H. J. Byrne, “Growth Substrate Induced
Functional Changes Elucidated by FTIR and Raman Spectroscopy in In-
Vitro Cultured Human Keratinocytes,” Analytical and Bioanalytical Chemistry,
387:1717–1728, 2007.
55. J. Lee, E. Gazi, J. Dwyer, N. P. Lockyer, M. D. Brown, N. W. Clarke, and P.
Gardner, “Optical Artifacts in Transflection Mode FTIR Microspectroscopic
Images of Single Cells on a Biological Support: Does Rayleigh Scattering Play
a Role?” Analyst, 132:750–755, 2007.
56. H. Y. N. Holman, R. Goth-Goldstein, M. C. Martin, M. L. Russell, and W. R.
McKinney, “Low-Dose Responses to 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in Single
Living Human Cells Measured by Synchrotron Infrared Spectromicroscopy,”
Environmental. Science and Technology, 34:2513–2517, 2000.
57. D. Moss, M. Keese, and R. Pepperkok. IR Microspectroscopy of Live Cells,”
Vibrational Spectroscopy, 38:185–191, 2005.
58. H. Y. N. Holman, M. C. Martin, W. R. McKinney, “Synchrotron-Based FTIR
Spectromicroscopy: Cytotoxicity and Heating Considerations,” Journal of
Biomedical Physics, 29:275–286, 2003.
59. M, Miljkovic, M. Romeo, C. Matthaus, and M. Diem, “Infrared Microspectroscopy
of Individual Human Cervical Cancer (HeLa) Cells Suspended in Growth
Medium,” Biopolymers, 74:172–175, 2004.
60. C. Krafft, T. Knetschke, A. Siegner, R. H. W. Funk, and R. Salzer, “Mapping
of Single Cells by Near Infrared Raman Microspectroscopy,” Vibrational
Spectroscopy, 32:75–83, 2003.
61. K, Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone,
K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari. and M. S. Feld, “Surface-Enhanced