Page 212 - Vibrational Spectroscopic Imaging for Biomedical Applications
P. 212
188 Cha pte r S i x
13. F. Lagugne Labarthet, J. L. Bruneel, T. Buffeteau, and C. Sourisseau,
“Chromophore Orientation Upon Irradiation in Gratings Inscribed on Azo-Dye
Polymer Films: A Combined AFM and Confocal Raman Microscopic Study,”
Journal of Physical Chemistry, B, 108:6949–6960, 2004.
14. F. Lagugne-Labarthet, C. Sourisseau, R. Schaller, R. Saykally, and P. Rochon,
“Chromophore Orientations in a Nonlinear Optical Azopolymer Diffraction
Grating: Even and Odd Order Parameters from Far-Field Raman and Near-
Field Second Harmonic Generation Microscopies,” Journal of Physical Chemistry,
B, 108:17059–17068, 2004.
15. C. de Grauw, C. Otto, and J. Greve, “Line-Scan Raman Microspectrometry for
Biological Applications,” Applied Spectroscopy, 51(11):1607–1612, 1997.
16. M. Bowden, D. J. Gardiner, G. Rice, D. L. Gerrard, “Line-Scanned Micro
Raman Spectroscopy Using a Cooled CCD Imaging Detector,” Journal of Raman
Spectroscopy, 21:37–41, 1990.
17. C. A. Drumm and M. D. Morris, “Microscopic Raman Line-Imaging with
Principal Component Analysis,” Applied Spectroscopy, 49:1331–1337, 1995.
18. K. Christensen and M. Morris, “Hyperspectral Raman Microscopic Imaging
Using Powell Lens Line Illumination,” Applied Spectroscopy, 52(9):1145–1147,
1998.
19. S. L. Zhang, J. A. Pezzuti, M. D. Morris, A. Appadwedula, C. Hsiung, M.
Leugers and D. Bank, “Hyperspectral Line Imaging of Syndiotactic Polystyrene
Crystallinity,” Applied Spectroscopy, 52(10):1264–1268, 1998.
20. J. A. Timlin, A. Carden, M. D. Morris, J. Bonadio, C. Hoeffler II, and K. Kozloff;
S. Goldstein, “Spatial Distribution of Phosphate Species in Mature and Newly
Generated Mammalian Bone by Hyperspectral Raman Imaging,” Journal of
Biomedical Optics, 4(1):28–34, 1999.
21. J. Timlin, “Chemical Microstructure of Cortical Bone Probed by Raman
Transects,” Applied Spectroscopy, 53(11):1429–1435, 1999.
22. J. Timlin, A. Carden, M. Morris, R, Rajachar, and D. Kohn, “Raman Spectroscopic
Imaging Markers for Fatigue-Related Microdamage in Bovine Bone,” Analytical
Chemistry, 72(10):2229–2236, 2000.
23. N. Gierlinger, L. Sapei, and O. Paris, “Insights into the Chemical Composition
of Equisetum Hyemale by High Resolution Raman Imaging,” Planta,
227:969–980, 2008.
24. J. Ma and D. Ben-Amotz, “Rapid Micro-Raman Imaging Using Fiber-Bundle
Image Compression,” Applied Spectroscopy, 51(12):1845–1848, 1997.
25. M. V. Schulmerich, W. F. Finney, R. A. Fredericks, and M. D. Morris, “Subsurface
Raman Spectroscopy and Mapping Using a Globally Illuminated Non-Confocal
Fiber-Optic Array Probe in the Presence of Raman Photon Migration,” Applied
Spectroscopy, 60(2):109–114, 2006.
26. M. V. Schulmerich, K. Dooley, T. Vanasse, S. Goldstein, and M. Morris,
“Subsurface and Transcutaneous Raman Spectroscopy and Mapping Using
Concentric Illumination Rings and Collection with a Circular Fiber-Optic
Array,” Applied Spectroscopy, 61(7):671–678, 2007.
27. H. Sato, T. Tanaka, T. Ikeda, S. Wada, H. Tashiro, and Y. Ozaki, “Biomedical
Applications of a New Portable Raman Imaging Probe,” Journal of Molecular
Structure, 598:93–96, 2001.
28. P. Treado, “Chemical Imaging Reveals More Than the Microscope,” Laser Focus
World, 31(10):75, 1995.
29. G. Puppels, M. Grond, and J. Greve, “Direct Imaging Raman Microscopy Based
on Tunable Wavelength Excitation and Narrow-Band Emission Detection,”
Applied Spectroscopy, 47:1256–1267, 1993.
30. D. Batchelder, C. Cheng, W. Muller, and B. Smith, “A Compact Raman Microprobe/
Microscope: Analysis of Polydiacetylene Langmuir and Langmuir-Blodgett Films,”
Makromolekulare Chemie Macromolecular Symposia, 46:171–179, 1991.
31. P. Treado, I. Levin, and E. Lewis, “High-Fidelity Raman Imaging Spectrometry:
A Rapid Method Using an Acousto-Optic Tunable Filter,” Applied Spectroscopy,
46(8):1211–1216, 1992.
32. H. Morris, C. Hoyt, P. Miller, and P. Treado, “Liquid Crystal Tunable Filter
Raman Chemical Imaging,” Applied Spectroscopy, 50(6):805–811, 1996.