Page 322 -
P. 322

306    6. Introduction to Pseudodifferential Operators


                                                         −2N    −n          N         i(x−y)·ξ
                            K A (x, y)= k(x, x − y)= |y − x|  (2π)    (−∆ ξ ) a(x, ξ) e    dξ
                                                                  IR n
                                          for x  = y                                   (6.1.12)

                                       m+n
                                          !
                           where N ≥        +1 for m + n ≥ 0 and N =0 for m + n< 0. In the latter
                                        2
                           case, K A is continuous in Ω × Ω and for u ∈ C (Ω) and x ∈ Ω we have the
                                                                     ∞
                                                                    0
                           representation

                                               Au(x)=     k(x, x − y)u(y)dy .          (6.1.13)
                                                       Ω
                           If n + m ≥ 0 let ψ ∈ C (Ω) be a cut–off function with ψ(x)=1 for all
                                                 ∞
                                                 0
                           x ∈ supp u.Then
                                                     α
                              Au(x)  =        c α (x)D u(x)                            (6.1.14)
                                        |α|≤2N


                                                                    1       α  α
                                         +   k(x, x − y) u(y) −       (y − x) D u(x) ψ(y)dy
                                                                    α!
                                                              |α|≤2N
                                           Ω
                           where
                                                       1       α     i(x−y)·ξ

                                               −n
                                    c α (x)=(2π)         (y − x) ψ(y)e     dya(x, ξ)dξ .
                                                       α!
                                                 IR n  Ω
                           Alternatively,
                                               Au(x)=(A 1 u)(x)+(A 2 u)(x);
                           here

                                              (A 1 u)(x)=  k 1 (x, x − y)u(y)dy        (6.1.15)
                                                         Ω
                           with


                                     k 1 (x, x − y)=(2π) −n    1 − χ(ξ) a(x, ξ)e i(x−y)·ξ dξ ,
                                                        IR n
                           and the integro–differential operator

                                                                       N
                                           (A 2 u)(x)=  k 2 (x, x − y)(−∆ y ) u(y)dy   (6.1.16)
                                                     Ω
                           where

                                      k 2 (x, x − y)=(2π) −n  |ξ| −2N  χ(ξ)a(x, ξ)e i(x−y)·ξ dξ
                                                        IR n
                           and χ(ξ) is the cut–off function with χ(ξ)=0 for |ξ|≤ ε and χ(ξ)=1 for
                           |ξ|≥ R.
   317   318   319   320   321   322   323   324   325   326   327