Page 324 -
P. 324

308    6. Introduction to Pseudodifferential Operators


                             I  := (2π) −n         v(y)ψ(y)e i(x−y)·ξ dy a(x, ξ)dξ
                                            n
                                          IR supp(ψ)

                                =   (2π) −n        v(y)ψ(y)|y − x| −2    (−∆ ξ )e i(x−y)·ξ    dy a(x, ξ)dξ
                                            n
                                          IR supp(ψ)
                           and with integration by parts


                                     #
                             I = lim  (2π) −n           v(y)ψ(y)|y − x| −2  e i(x−y)·ξ dy
                                R→∞
                                            |ξ|≤R supp(ψ)

                                                                           (−∆ ξ )a(x, ξ) dξ

                             −(2π) −n            v(y)ψ(y)|y − x| −2    i(x − y)e i(x−y)·ξ  dy ·  ξ  a(x, ξ)dS ξ
                                                                                  |ξ|
                                    |ξ|=R supp(ψ)

                                                                                          $




                             +(2π) −n           v(y)ψ(y)|y − x| −2  e i(x−y)·ξ  dy ∇ ξ a(x, ξ) ·  ξ  dS ξ
                                                                                     |ξ|
                                    |ξ|=R supp(ψ)
                             = lim [I 1 (R)+ I 2 (R)+ I 3 (R)]
                               R→∞
                              Now we examine each of the Integrals I j for j =1, 2, 3 separately.
                           Behaviour of I 1 (R): The inner integral of I 1 reads

                                                                       −2     i(x−y)·ξ
                                      Φ 1 (x, ξ):=        v(y)ψ(y)|y − x|  e      dy
                                               supp(ψ)⊂IR n
                                     ∞
                           and is a C –function of ξ which decays faster than any power of |ξ|;in
                           particular of an order higher than n+m−2, as can be shown with integration
                           by parts and employing (6.1.11) with z and ξ exchanged. Hence, the limit



                                                                    e
                              lim I 1 (R)=(2π) −n    v(y)ψ(y)|y − x| −2 i(x−y)·ξ dy (−∆ ξ )a(x, ξ) dξ
                             R→∞
                                               IR n  Ω
                           exists.
                           Behaviour of I 2 (R): Similarly, the inner integral of I 2 ,


                                                                 −2        i(x−y)·ξ
                                     Φ 2 (x, ξ):= i  v(y)ψ(y)|y − x|  (x − y)e   dy ,
                                                Ω
                           is a C –function of ξ which decays faster than any power of |ξ| = R;in
                                 ∞
                           particular of an order higher than m + n − 2. Therefore,
                                  I 2 (R)= O(R m+n−1−ν ) → 0for R →∞ if ν> m + n − 1 .
   319   320   321   322   323   324   325   326   327   328   329