Page 328 -
P. 328

312    6. Introduction to Pseudodifferential Operators

                              Next, we show the sufficiency of i) and ii).Let K x be any compact subset
                           of Ω and K y the corresponding subset in ii) such that supp v∩K y = ∅ implies
                           supp(Av) ∩ K x = ∅.Wewanttoshowthatsupp K A ∩ (K x × Ω) is compact.
                                                       ∞
                           To this end, we consider ψ ∈ C (Ω) with supp ψ ⊂ K x . Then
                                                      0

                                         Av, ψ   =      K A (x, y)v(y)ψ(x)dydx
                                                   Ω Ω

                                                =         K A (x, y)v(y)dyψ(x)dx =0

                                                   Ω Ω\K y
                                         ∞
                           for every v ∈ C (Ω) with supp v ∩K y = ∅ due to ii). This implies supp K A ∩
                                        0
                            K x × (Ω \ K y ) = ∅;so,
                                   supp K A ∩ (K x × Ω) = supp K A ∩ (K x × K y ) ⊂ K x × K y .

                           Hence, supp K A ∩(K x ×Ω) is compact because K x ×K y is compact. To show
                           that for any chosen compact K y   Ω, the set supp K A ∩(Ω ×K y ) is compact
                           we invoke i) and take K x to be the corresponding compact set in Ω. Then
                           for any v ∈ C (Ω) with supp v ⊂ K y , we have supp(Av) ⊂ K x . Hence, for
                                        ∞
                                       0
                                      ∞
                           every ψ ∈ C (Ω \ K x ),
                                      0

                                              K A (x, y)v(y)dyψ(x)dx =  Av, ψ  =0 .
                                          Ω Ω
                              As a consequence, we find supp K A ∩ (Ω × K y ) = supp K A ∩ (K x × K y )
                           ⊂ K x × K y ; so, supp K A ∩ (Ω × K y ) is compact. Thus, K A is properly
                           supported.

                              Lemma 6.1.4 implies the following corollary.
                           Corollary 6.1.5. The operator A : C (Ω) → C ∞  is properly supported if
                                                              ∞
                                                             0
                           and only if the following two conditions hold:
                              i) For any compact subset K y   Ω there exists a compact K x   Ω
                           such that
                                                 ∞
                                                           ∞
                                           A : C (K y ) → C (K x ) is continuous.      (6.1.21)
                                                 0         0
                              ii) For any compact subset K x   Ω there exists a compact K y   Ω
                           such that
                                                             ∞
                                           A    : C (K x ) → C (K y ) is continuous.   (6.1.22)
                                                  ∞
                                                  0          0
                                                         ∞
                           Proof: Since A : C (Ω) → C (Ω) is continuous, i) in Lemma 6.1.4 is
                                               ∞
                                               0
                           equivalent to (6.1.21).
                              Now, if A is properly supported then K (x, y)= K  A  (y, x)isthe

                                                                    A
                           Schwartz kernel of A    and, hence, also properly supported. Therefore i)
                           in Lemma 6.1.4 is valid for K A  (x, y)= K (y, x) which, for this case, is

                                                                   A
   323   324   325   326   327   328   329   330   331   332   333