Page 327 -
P. 327

6.1 Basic Theory of Pseudodifferential Operators  311

                           such that  K A ,ϕ   = 0. In accordance with Definition 6.1.4, any continuous
                                                     ∞
                           linear operator A : C 0 ∞  → C (Ω) is called properly supported if and only
                           if its Schwartz kernel K A ∈D (Ω × Ω) is a properly supported distribution.

                              In order to characterize properly supported operators we recall the fol-
                           lowing lemma.
                           Lemma 6.1.4. (see Folland [82, Proposition 8.12]) A linear continuous op-
                           erator A : C (Ω) → C (Ω) is properly supported if and only if the following
                                       ∞
                                                ∞
                                      0
                           two conditions hold:
                           i) Forany compactsubset K y   Ω there exists a compact K x   Ω such that
                               supp v ⊂ K y implies supp(Av) ⊂ K x .
                           ii) For any compact subset K x   Ω there exists a compact K y   Ω such that
                               supp v ∩ K y = ∅ implies supp(Av) ∩ K x = ∅.
                           Proof:
                              We first show the necessity of i) and ii) for any given properly supported
                           operator A. To show i),let K y be any fixed compact subset of Ω. Then define

                            K x := {x ∈ Ω |  there exists y ∈ K y with (x, y) ∈ supp K A ∩ (Ω × K y )}
                           where K A is the Schwartz kernel of A. Clearly, K x is a compact subset of
                           Ω since supp K A ∩ (Ω × K y ) is compact because K A is properly supported.
                           In order to show i), i.e. supp(Av) ⊂ K x , we consider any v ∈ C (Ω) with
                                                                                    ∞
                                                                                    0
                           supp v ⊂ K y and ψ ∈ C (Ω \ K x ). Then
                                                ∞
                                                0

                                          Av, ψ   =      K A (x, y)v(y)dyψ(x)dx
                                                    Ω Ω

                                                 =       K A (x, y)ψ(x)v(y)dxdy =0
                                                    K y Ω

                           since for x ∈ supp ψ ⊂ Ω\K x and all y ∈ supp v we have (x, y)  ∈
                           supp K A ∩ (Ω × K y ). Hence,  Av, ψ  = 0 for all ψ ∈ C (Ω \ K x ) and we find
                                                                          ∞
                                                                          0
                           supp(Av) ⊂ K x .
                              For ii),let K x be any compact fixed subset of Ω. Then define
                           K y := {y ∈ Ω |  there exists x ∈ K x with (x, y) ∈ supp K A ∩ (K x × Ω)} ,
                                                               ∞                  ∞
                           which is a compact subset of Ω.For v ∈ C (Ω\K y )and ψ ∈ C (supp(Av)∩
                                                               0
                                                                                 0
                           K x )wehave

                                           Av, ψ  =     K A (x, y)v(y)ψ(x)dydx =0
                                                   Ω Ω
                           since for every y ∈ supp v we have y  ∈ K y and (x, y)  ∈ supp K A ∩ (K x × Ω)
                           for all x ∈ supp ψ. Hence,  Av, ψ  = 0 for all ψ ∈ C (supp(Av) ∩ K x )which
                                                                        ∞
                                                                        0
                           implies supp(Av) ∩ K x = ∅.
   322   323   324   325   326   327   328   329   330   331   332