Page 338 -
P. 338

322    6. Introduction to Pseudodifferential Operators

                                                        ∞
                           with the Schwartz kernel k R ∈ C (Ω × Ω)of R. The transformed operator
                                 ∗
                           Φ ∗ RΦ has the Schwartz kernel
                                                               ∂Φ
                                                                     −1
                                         (−1)     (−1)                     ∞
                                    k R Φ   (x ) ,Φ  (y )  det         ∈ C (Ω × Ω ) .
                                                                ∂y
                                       ∗
                           Hence, Φ ∗ RΦ is a smoothing operator.
                           ii) It remains to show that the properly supported part Φ ∗ A 0 Φ ∗  ∈
                                m
                                         n


                           OPS (Ω × IR ). For any v ∈D(Ω ) we have the representation
                                                        (−1)

                                  ∗
                            (Φ ∗ A 0 Φ v)(x )=(A 0 Φ v) Φ  (x )

                                                  ∗

                                          =   (2π) −n    e i(x−y)·ξ a(x, ξ)(v ◦ Φ)(y)dydξ
                                                    IR n  Ω




                                          =   (2π) −n             e i(x−y)·(Ξ (x ,y )ξ)  a(x, ξ)v(y ) ×

                                                     n
                                                    IR Ω   ∧|x   −y   |≤2ε
                                                                         −1
                                                        x − y        ∂φ


                                                   ×ψ             det       dy dξ + Rv
                                                           ε         ∂y
                           where


                                                                               x − y

                               (Rv)(x)=(2π)    −n      e i(x−y)·ξ a(x, ξ)v(y ) 1 − ψ    ×
                                                                                  ε
                                                   n
                                                 IR Ω
                                                              ∂φ
                                                                   −1

                                                       × det        dy dξ
                                                              ∂y
                           and y = Φ (−1) (y ) ,x = Φ (−1) (x ).


                              With the affine transformation of coordinates,




                                                     Ξ (x ,y )ξ = ξ ,
                           the first integral reduces to








                                  (A Φ,0 v)(x )=(2π) −n   e i(x −y )·ξ   v(y )a Φ (x ,y ,ξ )dy dξ

                                                      n
                                                     IR Ω
                                                                                           n
                                                                                   m
                           with a Φ (x ,y ,ξ ) given by (6.1.46). Since a(x, ξ) belongs to S S S (Ω×, IR ),



                           with the chain rule one obtains the estimates
                                   ∂       ∂       ∂    α
                                             γ
                                      β

                                                     a Φ (x ,y ,ξ )  ≤ c(K, α, β, γ)(1 + |ξ |)
                                                                                      m−|α|

                                  ∂x     ∂y    ∂ξ
                                                        n




                           for all (x ,y ) ∈ K × K, ξ ∈ IR and any compact subset K   Ω . Hence,
                                               n
                                 m

                           a Φ ∈ S S S (Ω × Ω × IR ).
   333   334   335   336   337   338   339   340   341   342   343