Page 340 -
P. 340

324    6. Introduction to Pseudodifferential Operators






                                        (x ,ξ )  = e −ix ·ξ   A Φ,0 e iξ ·• (x )
                                   σ A Φ,0

                                               = e  −iΦ(x)·ξ   A 0 e iξ ·Φ(·) (x)for x = Φ −1 (x )

                           after coordinate transform. With the substitution
                                                         ∂Φ
                                            Φ(z)= Φ(x)+     (x)(z − x)+ r(x, z)
                                                          ∂x
                           we obtain

                                                          ξ )
                                                      ∂Φ        −n      −i(x−z)·ξ


                                      (x ,ξ )  = e          (2π)       e        a(x, ξ) ×
                                                  −ix·( ∂x
                                  σ A Φ,0
                                                                  IR n  Ω
                                                               ∂Φ
                                                                  ξ ) ir(x,z)·ξ
                                                         ×e iz·( ∂x  e      dzdξ
                                              = e −ix·ζ A ◦ Be i•·ζ
                           where A = a(x, D)and B is the multiplication operator defined by the symbol
                                                    σ B (z, ξ)= e ir(x,z)·ξ

                           with x and ξ fixed as constant parameters. With formula (6.1.29) we then
                           find
                                                                                  ∂Φ


                                      (x ,ξ ) ∼ σ A◦B (x, ζ) where x = Φ(x)and ζ =    ξ .


                                 σ A Φ,0
                                                                                  ∂x
                           The symbol of A ◦ B is given by (6.1.37), which now implies
                                                        α                    α
                                                1     ∂                   ∂
                                                                               ir(x,z)·ξ
                                   (x ,ξ ) ∼             a(x, ξ)       − i    e
                               σ A Φ,0
                                               α!   ∂ξ                    ∂z
                                           α≥0                  | ξ=ζ                  | z=x
                           with constant ζ =  ∂Φ    ξ , which is the desired formula (6.1.50).

                                            ∂x
                              To show (6.1.52) we employ induction for α with |α|≥ 1. In particular
                           we see that
                                   ∂   iξ ·r(x,y)     iξ ·r(x,z)     ∂Φ  ∂Φ


                                      e       =  ie            (z) −   (x) · ξ      =0
                                       | z=x
                                  ∂z j                      ∂z j    ∂x j
                                                                                | z=x
                           and
                                   ∂  ∂   iξ ·r(x,z)     2 iξ ·r(x,z)     ∂Φ  ∂Φ



                                         e        =    i e            (z) −   (x) · ξ ×
                                          | z=x
                                  ∂z k ∂z j                       ∂z j     ∂x j

                                                        ∂Φ       ∂Φ
                                                           (z) −    (x) · ξ
                                                        ∂z k    ∂x k
                                                                   2
                                                                  ∂ Φ
                                                         iξ ·r(x,z)

                                                      +ie              (z) · ξ
                                                                ∂z j ∂z k
                                                                              | z=x
                                                         2
                                                        ∂ Φ

                                                  = i        (x) · ξ ,
                                                       ∂x j ∂x k
   335   336   337   338   339   340   341   342   343   344   345