Page 352 -
P. 352

336    6. Introduction to Pseudodifferential Operators

                              We are now in the position to define Levi functions of various orders
                           recursively as follows.
                                  L 0 (x, y)  := A 0 (x, −iD; y)δ(·− y) ,
                                  L j (x, y)  := L 0 (x, y)+ A 0 (x, −iD; y)T(y)L j−1 (x, y) .
                                                            j



                                           =   A 0 (x, −iD; y)  T(y)A 0 (·, −iD; y) δ(·− y) ,
                                                            =0
                                           =   A j (x, −iD; y)δ(·− y) .                (6.2.40)
                           L j (x, y) is the Levi function of order j for the operator P.
                              By applying P to L j (x, y) we obtain

                            PL j (x, y)= P 0 (y) − T(y) L j (x, y)
                                                                 j


                                     = P 0 (y) − T(y) A 0 (x, −iD; y)  T(y)A 0 (·, −iD; y) δ(·− y)
                                                                 =0
                                          j                     j+1



                                     =       T(y)A 0 (·, −iD; y)  −  T(y)A 0 (·, −iD; y)  δ(·− y)
                                          =0                     =1
                                                                   j+1
                                     = δ(x − y) − T(y)A 0 (·, −iD; y)  δ(·− y) .
                           By introducing N 0 (x, y):= L 0 (x, y)and
                                           N j+1 (x, y):= A 0 (x, −iD; y)T(y)N j (·,y)  (6.2.41)

                           we can write
                                              PL j = δ(x − y) − T(y)N j+1 (x, y) .     (6.2.42)

                           In the following, we want to show that every N j (x, y) is a Schwartz kernel of
                                                            −j−2κ
                           a pseudodifferential operator N ∈L     (Ω) ,j =0, 1,... and, hence, the
                                                     ∼j
                           kernel N j (x, y) has the form

                                            −n+j+2κ
                              N j (x, y)= |x−y|      f j x, |x−y|, Θ + log |x−y| g j (x, |x−y|, Θ) ,
                                                               )
                                                                                        )
                                                               n
                                             ∞
                                    f j ,g j ∈ C (Ω × IR ×{Θ ∈ IR ||Θ| =1}) .          (6.2.43)
                                                                  )
                                                         )
                           (The latter will be shown in Theorem 7.1.8).
                              We further consider the kernels
                                                  T j (x, y):= T(y)N j (x, y)          (6.2.44)
                           and will show that T j (x, y) is also a Schwartz kernel of a pseudodifferential
                           operator T  ∈L  −j−1 (Ω). Hence, T j (x, y) also has the form (6.2.43) with
                                    ∼j
                           j +2κ replaced by j +1.
   347   348   349   350   351   352   353   354   355   356   357