Page 356 -
P. 356

340    6. Introduction to Pseudodifferential Operators

                           Note that the special choice of T j in (6.2.44) and N j in (6.2.41) leads to the
                           assumption in Lemma 6.2.6.
                           Proof: From the definition (6.2.52) of the kernel function N j+1 one has the
                           representation
                                                  1           1    i(x−z)·ξ
                                    N j+1 (x, y)=                 e       T j (z, y)dzdξ .
                                                            0
                                                (2π) n     a (y, ξ)
                                                            2κ
                                                     IR n  Ω
                           Hence, this kernel defines the operator
                                                  1          e i(x−z)·ξ
                                   (N    f)(x)=                      T j (z, y)f(y)dzdydξ .
                                                              0
                                    ∼j+1        (2π) n       a (y, ξ)
                                                              2κ
                                                     IR n  Ω Ω
                                          −j−1                    −j−1
                              Since T ∈L      , we also have T  ∈L    due to Theorem 6.1.8 and,
                                    ∼j                     ∼j
                           for the properly supported part T jp we may use (6.1.27) which yields

                                               e i(y−z)·ξ T jp (z, y)dz = σ   (y, −ξ) .
                                                                   T jp
                                             Ω
                           Hence, performing the integration with respect to z yields

                                                1        e i(x−y)·ξ
                                 (N   f)(x)=                    σ T  (y, −ξ)f(y)dydξ
                                                          0
                                  ∼j+1        (2π) n     a (y, ξ)  jp
                                                          2κ
                                                   IR n  Ω                             (6.2.53)
                                            1          e i(x−z)·ξ
                                         +                     T j∞ (z, y)f(y)dzdydξ .
                                                        0
                                          (2π) n       a (y, ξ)
                                                        2κ
                                               IR n  Ω Ω
                           The first term on the right–hand side defines an operator of the form (6.1.26)
                           with the amplitude function
                                                    χ(ξ)      −(j+2κ+1)          n
                               a(x, y, ξ)= σ T   (y, −ξ)  0  ∈ S S S  (Ω × Ω × IR ) .  (6.2.54)
                                           jp      a (y, ξ)
                                                    2κ
                           Here, χ(ξ) is again the cut–off function with χ(ξ)=1 for |ξ|≥ 1and χ(ξ)=0
                                   1
                           for |ξ|≤ . The remaining (1 − χ(ξ))a(x, y, ξ) is a distribution with compact
                                   2
                           support, and, hence, defines a smoothing operator.
                              The second term in (6.2.53) has the Schwartz kernel
                                                          e
                                                           i(x−z)·ξ
                                            k(x, y):=      0     T j∞ (z, y)dzdξ
                                                          a (y, ξ)
                                                           2κ
                                                    IR n  Ω
                                     ∞
                           which is C (Ω × Ω). Hence, it defines a smoothing operator. This implies
                           N     ∈L −(j+2κ+1) (Ω), completing the proof.
                            ∼j+1
   351   352   353   354   355   356   357   358   359   360   361