Page 355 -
P. 355

6.2 Elliptic Pseudodifferential Operators on Ω ⊂ IR n  339


                                              σ K (x, ξ)=  k p (x, y)e i(y−x)·ξ dξ .   (6.2.51)
                                                        Ω
                           The factors (a α (y) − a α (x)) in (6.2.31) induce new kernels of the form

                                                     α
                                      a α (y) − a α (x) D N j (x, y)= a α (y) − a α (x) k αj (x, y)
                                                    x
                           and can be written as asymptotic sums

                                                                 β
                                                    c αjβ (x)(x − y) k αj (x, y)
                                                |β|≥1
                           by using the Taylor expansion for a α . The new Schwartz kernels

                                                   α
                                                                    α
                                             (x − y) k p (x, y)+(x − y) k ∞ (x, y)
                           generate properly supported pseudodifferential operators with symbols


                                                            β
                                           σ(x, ξ)=   (x − y) k p (x, y)e i(y−x)·ξ dy .
                                                    Ω
                           The latter can be rewritten as
                                                  β
                                               ∂             i(y−x)·ξ

                               σ(x, ξ)  =   −i        k p (x, y)e   dy
                                              ∂ξ
                                                   Ω
                                                  β

                                               ∂                          n
                                       =    −i      σ K (x, ξ) ∈ S S S  −j−|β| (Ω × IR ) with |β|≥ 1 .
                                              ∂ξ
                           Consequently, T(y)N j (x, y)= T j (x, y) defines the Schwartz kernel of a
                           pseudodifferential operator T  ∈L −j−1 (Ω) and, also, defines the operator
                                                    ∼j
                                        2κ−1
                           T with T ∈L     (Ω).
                           ∼      ∼
                              We now justify the assumption for N made in Lemma 6.2.5. For N given
                                                            ∼j                        ∼j
                                                                                       −2κ
                           by the Schwartz kernel N j in (6.2.43), we have already shown N ∈L  (Ω).
                                                                                 ∼0
                                                                                         j−2κ
                           For j ∈ IN, the following lemma justifies the desired property of N ∈L  .
                                                                                   ∼j
                           Lemma 6.2.6. Let T j (x, y) be the Schwartz kernel of a pseudodifferential
                                         −j−1
                           operator T ∈L      with j ∈ IN 0 .Then
                                   ∼j
                                               A 0 (x, D; y)T j (·,y)=: N j+1 (x, y)   (6.2.52)
                           defines the Schwartz kernel of a pseudodifferential operator
                           N     ∈L −(j+2κ+1) (Ω).
                            ∼j+1
   350   351   352   353   354   355   356   357   358   359   360