Page 84 -
P. 84

68     2. Boundary Integral Equations

                                                                 2
                           having a weakly singular kernel for Γ ⊂ C , and, hence, defines a continu-
                                             α
                           ous mapping K : C (Γ) → C  1+α (Γ)(seeLadyˇzenskaya [179, p. 35] where
                           the fundamental solution and the potentials carry the opposite sign). The
                           hypersingular operator D is now defined by
                            Dϕ   =   −T x Wϕ(x)

                                 := −     lim  T z (∂ z ,x) Wϕ(z)                      (2.3.30)
                                       Ω z→x∈Γ


                                 =      lim     Πϕ(z) n(x) − µ ∇ z Wϕ(z)+ ∇ z Wϕ(z)    n(x) .
                                     Ω z→x∈Γ
                           With the standard regularization this reads



                            Dϕ(x)= −p.v.      T x T E(x, y)  ϕ(y) − ϕ(x) ds y          (2.3.31)
                                                  y
                                          Γ
                                  −µ               1
                             =          p.v.   2       n(y) · ϕ(y) − ϕ(x)
                               2(n − 1)π        |x − y| n
                                            Γ
                                            n                                   !
                                      +           n(y) · n(x) (x − y) · ϕ(y) − ϕ(x) (x − y) ds y
                                         |x − y| n+2
                                    µ           2n(n +2)           !
                               +                       (x − y) · n(x)
                                 2(n − 1)π    |x − y| n+4
                                          Γ
                                                            !                     !
                                              × (x − y) · n(y) (x − y) · ϕ(y) − ϕ(x) (x − y)
                                               n                  !                     !
                                         −             (x − y) · n(x) (x − y) · ϕ(y) − ϕ(x) n(y)
                                            |x − y| n+2
                                                                              !
                                              + n(x) · ϕ(y) − ϕ(x) (y − x) · n(y) (x − y)

                                                            !            !
                                              + (x − y) · n(x) (x − y) · n(y) ϕ(y) − ϕ(x)  ds y .
                              Again, as in Lemma 2.2.3, the hypersingular operator can be reformulated.
                                                                 2
                           Lemma 2.3.1. Kohr et al [164] Let Γ ∈ C and let ϕ be a H¨older continu-
                           ously differentiable function. Then the operator D in (2.3.30) can be expressed
                           as a composition of tangential differential operators and simple layer poten-
                                                                             λ+µ
                           tials as in (2.2.32)–(2.2.34) where in the case n =2 set  =1 in (2.2.33)
                                                                            λ+2µ
                           and in the case n =3 take E(x, y) from (2.3.10) in (2.2.34).
                           Now let us assume that the boundary Γ =  L "  Γ   consists of L separate,
                                                                     =1
                           mutually non intersecting compact boundary components Γ 1 ,...,Γ L .
                              Before we exemplify the details of solvability of the boundary integral
                           equations, we first summarize some basic properties of their eigenspaces.
                           Theorem 2.3.2. (See also Kohr and Pop [163].) Let n =3. Then we have
                           the following relations.
   79   80   81   82   83   84   85   86   87   88   89