Page 88 -
P. 88

72     2. Boundary Integral Equations




                                      conditions        =0  x)ds  ×  .  IR 3



                                      Compability  ϕ, ψ  given  for     =0  nds  ·  ϕ  Γ     b  +  (a  ·  ψ  Γ  ∈  a, b  all  for  None  None








                                                             k}
                                                              =
                                                             0,
                                                             =
                                                             , v| Γ k

                                                  {n  }  {v j, }  x| Γ

                                          1)      span  span  ×  b  +  {τ j, },  K)  {u 0 },
                                 Problem  BIO  − 1, 3(n  =  K   )  =  K)  a  =  span  +  ker( 1 I  2  span


                                 Stokes  of  =  j  −  2  + =ker( 1 I  2  {v| Γ    of  {n  }  span  =  K   )  ∈  v j,   {v j, }  span  =  K)  kerV  ∈


                                 3–D  Eigenspaces  1,L ;  =ker( 1  basis  =  +  =  =  −  n    =
                                 the      =   , k  kerV  kerD  v j,   kerV  ker( 1 I  2  τ j,   V  kerD  ker( 1 I  2  Du 0
                                 for
                                 Equations     K)ϕ  Dϕ  =  K   )ψ  ψ  V  K)ϕ  +  −Dϕ  =  K   )ψ  ψ  V  =



                                 Integral      +  =( 1 I  2  K   )τ  −  − =( 1 I  2  =  K)u  +  =(− 1 I  2  K   )τ  +  +  −( 1  =  2  K)u  +  2



                                 Boundary  BIE  τ  (1)V  (2)( 1 I  2  (1)Du  (2)( 1 I  2  τ  (1)V  (2)( 1 I  2  (1)Du  (2)(− 1 I



                                 2.3.3.  BVP      IDP       INP      EDP           ENP

                                 Table
   83   84   85   86   87   88   89   90   91   92   93