Page 141 - Introduction to Statistical Pattern Recognition
P. 141

3 Hypothesis Testing                                          123


                    7.   A. Papoulis, “Probability, Random Variables, and Stochastic Processes,”
                         p. 250, McGraw-Hill, New York, 1965.
                    8.   K. Fukunaga, R. R. Hayes, and L. M. Novak, The acquisition probability for
                         a minimum distance one-class classifier, Trans. IEEE Aerospace and Elec-
                         tronic Systems, AES-23, pp. 493-499,1987.

                    9.   R. R. Parenti and E. W. Tung, A statistical analysis of the multiple-target,
                         multiple-shot target acquisition problem, Project Report ‘IT-43, Lincoln
                         Laboratory,M.I.T., 1981.
                    10.  G. E. Noether, “Elements of Non-Parametric Statistics,” Wiley, New York,
                         1967.
                    11.  K. Fukunaga and D. L. Kessell, Error evaluation and model validation in
                         statistical pattern recognition, Purdue University, Technical report TR-EE-
                         72-73, Chapter 6,1972.
                    12.  C. K. Chow, On optimum recognition error and reject tradeoff, Trans. IEEE
                         Inform. Theory, IT-l6,pp. 41-46,1970.

                    13.  K. Fukunaga and D. L. Kessell, Application of optimum error-reject func-
                         tions, Trans. IEEE Inform. Theory, IT-18, pp- 814-817,1972.
                    14.  K. Fukunaga and T. F. Krile, Calculation of Bayes recognition error for two
                         multivariate Gaussian distributions, Trans. IEEE  Computers, C- 18, pp.
                         220-229,1969.
                    15.  L. M. Novak, On the sensitivity of Bayes and Fisher classifiers in radar tar-
                         get detection, Proc. 18th Asilomar Conference  on Circuit, Systems, and
                         Computers,  Pacific Grove, CA, 1984.
                    16.  H. Chernoff, A measure of asymptotic efficiency for tests of  a hypothesis
                         based on the sum of observations, Ann. Math. Stat., 23, pp. 493-507,1952.
                    17.  A. Bhattacharyya, On a measure of divergence between two statistical popu-
                         lations defined by their probability distributions,  Bull. Calcutta Math. Soc.,
                         35, pp. 99-  1 10, 1943.
                    18.  S. D. Martinez, Private communication, 1988.
                    19.  I.  S. Gradshteyn and I. M. Ryzhik, “Tables of  Integrals, Series, and Pro-
                         ducts,“ Academic Press, New York, 1980.
                    20.   A. Wald, “Sequential Analysis,” Wiley, New York, 1947.

                    21.   A. Wald and J. Wolfowitz, Optimum character of the sequential probability
                         ratio test,Ann.  Math. Stat., 19, pp. 326-339, 1948.
   136   137   138   139   140   141   142   143   144   145   146