Page 141 - Introduction to Statistical Pattern Recognition
P. 141
3 Hypothesis Testing 123
7. A. Papoulis, “Probability, Random Variables, and Stochastic Processes,”
p. 250, McGraw-Hill, New York, 1965.
8. K. Fukunaga, R. R. Hayes, and L. M. Novak, The acquisition probability for
a minimum distance one-class classifier, Trans. IEEE Aerospace and Elec-
tronic Systems, AES-23, pp. 493-499,1987.
9. R. R. Parenti and E. W. Tung, A statistical analysis of the multiple-target,
multiple-shot target acquisition problem, Project Report ‘IT-43, Lincoln
Laboratory,M.I.T., 1981.
10. G. E. Noether, “Elements of Non-Parametric Statistics,” Wiley, New York,
1967.
11. K. Fukunaga and D. L. Kessell, Error evaluation and model validation in
statistical pattern recognition, Purdue University, Technical report TR-EE-
72-73, Chapter 6,1972.
12. C. K. Chow, On optimum recognition error and reject tradeoff, Trans. IEEE
Inform. Theory, IT-l6,pp. 41-46,1970.
13. K. Fukunaga and D. L. Kessell, Application of optimum error-reject func-
tions, Trans. IEEE Inform. Theory, IT-18, pp- 814-817,1972.
14. K. Fukunaga and T. F. Krile, Calculation of Bayes recognition error for two
multivariate Gaussian distributions, Trans. IEEE Computers, C- 18, pp.
220-229,1969.
15. L. M. Novak, On the sensitivity of Bayes and Fisher classifiers in radar tar-
get detection, Proc. 18th Asilomar Conference on Circuit, Systems, and
Computers, Pacific Grove, CA, 1984.
16. H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations, Ann. Math. Stat., 23, pp. 493-507,1952.
17. A. Bhattacharyya, On a measure of divergence between two statistical popu-
lations defined by their probability distributions, Bull. Calcutta Math. Soc.,
35, pp. 99- 1 10, 1943.
18. S. D. Martinez, Private communication, 1988.
19. I. S. Gradshteyn and I. M. Ryzhik, “Tables of Integrals, Series, and Pro-
ducts,“ Academic Press, New York, 1980.
20. A. Wald, “Sequential Analysis,” Wiley, New York, 1947.
21. A. Wald and J. Wolfowitz, Optimum character of the sequential probability
ratio test,Ann. Math. Stat., 19, pp. 326-339, 1948.