Page 198 - Introduction to Statistical Pattern Recognition
P. 198

180                        Introduction to Statistical Pattern Recognition


                       10.  In the design of  a piecewise linear classifier, propose a way  to assign the
                          desired  output  so  that  we  can  apply  the  technique  of  minimizing  the
                          mean-square error.


                       References


                       1.   H.  L.  VanTrees, “Detection,  Estimation, and  Modulation  Theory: Part
                            I,”  Wiley, New York,  1968.
                       2.   A.  Fisher, “The Mathematical Theory of  Probabilities,”  Vol. 1, Macmil-
                            Ian, New York, 1923.
                       3.   T. W.  Anderson and R.  R.  Buhadur, Classification into two multivariate
                            normal distributions with different covariance matrices, Ann. Math. Stat.,
                            33, pp. 422-431, 1962.
                       4.   D. W.  Peterson and  R.  L.  Mattson, A method of  finding linear discrim-
                            inant functions for a class of performance criteria, Trans. IEEE Inform.
                            Theory, IT-12, pp.  380-387, 1966.
                       5.   Y. C. Ho and R. L. Kashyap, An  algorithm for linear inequalities and its
                            applications, Trans. IEEE  Electronic  Computers, EC- 14,  pp.  683-688,
                            1965.
                       6.   C.  W.  Therrien  and  K.  Fukunaga, Properties  of  separable covariance
                            matrices and  their  associated Gaussian random  processes, Trans. IEEE
                            Pattern Anal. and Machine Intell., PAMI-6, pp. 652-656, 1984.
                       7.   K.  Fukunaga and  T.  Ito,  A  design  theory  of  recognition  functions  in
                            self-organizing systems, Trans. IEEE  Electronic  Computers, EC- 14, pp.
                            44-52, 1965.
   193   194   195   196   197   198   199   200   201   202   203