Page 245 - Introduction to Statistical Pattern Recognition
P. 245

5  Parameter Estimation                                       221



                          Proof  of g 2 0:  The perturbation  term, g, of  (5.130) is  always positive
                                     -2
                     no matter what N,, d, (Xt)), and n are.  The proof is given as follows.
                          Assuming  N, > 2,  I&  I  of  (5.127) should  be  positive  because  ilk is  a
                     sample covariance matrix and should be a positive definite matrix.  Therefore,
                                                 N,   A2
                                          1-          d; (Xi!)) > 0             (5.131)
                                              (N, -
                     On the other hand, from (5.130)
                                                      A2
                          ag  =1 (N:-3N, + l)/(N, - 1 )+2N, d,
                         -
                                                 -2
                          32;         (N,-I)’  - N,d,
                                  1  [ (N;-3N,+  1 )if/(N, - 1 )+N, i:]N,
                               +-
                                  2      [(N,-l)’  - N,2f12

                                  1
                               +-     -Nj/(Nj-1)’
                                                -2
                                    l-[Nj/(Nj-1)’]d;
                                     -4              -2
                                1  -N’d;  +N; (2N:-3N,  +2)dj -(Nj-  1)(2N;- 1 )
                              -                                                 (5.132)
                              --
                                2           [(N;-l)’  - NI$l2
                                 A2
                     The term &lad;  is equal to zero when
                                        A2   1      3N:  - 3Nj! + Ni
                                       dj = - or                                (5.133)
                                            Ni            N;
                     The second solution of (5.133) does not  satisfy the condition of  (5.131).  Since
                              -2    -2
                     g  and aglad;  for dj = 0 are positive  and negative, respectively,  the first  solu-
                     tion of (5.133) gives the minimum g, which is

                      1  (Nj!-3Nj+I)/(N;-I)+l   n   Nj-1   1       1
                     -                    +-In-       + - In[]  -      1
                      2    Nj[(Ni-1)2-1]    2    Nj-2   2       ~  (N;- 1 )2
                                                    -1
                                                                   N,-1
                                                             n-1
                                      1
                       -_      1   +-In[   (N1-1Y-l  N,-1   + - N,-2
                                                              2
                                                                 In-
                       -
                          1
                         2  N,(N,-l)   2    (N,-l)’   N,-2
   240   241   242   243   244   245   246   247   248   249   250