Page 68 - Introduction to Statistical Pattern Recognition
P. 68
50 Introduction to Statistical Pattern Recognition
References
1. R. V. Hogg and A. T. Craig, “Introduction to Mathematical Statistics
(Second Edition),” Macmillan, New York, 1965.
2. A. Papoulis, “Probability, Random Variables, and Stochastic Processes,”
McGraw-Hill, New York, 1965.
3. B. Noble and J. W. Daniel, “Applied Linear Algebra (Second Edition),”
Prentice-Hall, Englewood Cliffs, New Jersey, 1977.
4. S. R. Searle, “Matrix Algebra Useful for Statistics,” Wiley, New York,
1982.
5. J. H. Wilkinson, “Algebraic Eigenvalue Problem,” Oxford Univ. Press,
London and New York, 1965.
6. R. Deutsch, “Estimation Theory,” Prentice-Hall, Englewood Cliffs, New
Jersey, 1965.
7. A. Gelb (ed.), “Applied Optimal Estimation,” MIT Press, Cambridge, 1974.
8. K. Fukunaga and W. L. G. Koontz, Application of the Karhunen-Lotve
expansion to feature selection and ordering, Trans. IEEE Computers, C- 19,
pp.311-318,1970.
9. J. A. McLaughlin and J. Raviv, Nth order autocorrelations in pattern recogni-
tion, inform. and Contr., 1 2, pp. 12 1 - 142,1968.
10. R. Penrose, On the generalized inverse of a matrix, Proc. Cambridge Philos.
S0~.,51,~~.406-413,1955.
1 1. T. Marill and D. M. Green, On the effectiveness of receptors in recognition
systems, Trans. IEEE Inform. Theory, IT-9, pp. 1 1-27, 1963.