Page 328 - Materials Chemistry, Second Edition
P. 328

312  4 Life Cycle Impact Assessment

                    Baitz, M. (2002) Die Bedeutung der funk-  footprints. J. Ind. Ecol. doi: 10.1111/j.1530-
                      tionsbasierten Charakterisierung von  9290.2012.00495.x
                      Fl¨ achen-Inanspruchnahmen in indus-  B¨ osch, M.E., Hellweg, S., Huijbregts, M.,
                      triellen Prozesskettenanalysen. PhD thesis.  and Frischknecht, R. (2007) Applying
                      University of Stuttgart, www.shaker.de  cumulative exergy demand (CExD) indica-
                      (accessed 31 October 2013) (German).  tors to the ecoinvent database. Int. J. Life
                    Bare, J.C., Norris, G.A., Pennington, D.W.,  Cycle Assess., 12 (3), 181–190.
                      and McKone, D.W. (2002) TRACI – the  Boulay, A.M., Bulle, C., Bayart, J.B.,
                      tool for the reduction and assessment  Deschˆ enes, L., and Margni, M. (2011a)
                      of chemical and other environmental  Regional characterization of freshwater
                      impacts. J. Ind. Ecol., 6 (3/4), 49–78.  use in LCA: modelling direct impacts on
                    Bare, J., Pennington, D.W., and   human health. Environ. Sci. Technol., 45
                      Udo de Haes, H.A. (1999) Life cycle  (20), 8948–8957.
                      impact assessment sophistication. Int. J.  Boulay, A.-M., Bouchard, C., Bulle, C.,
                      Life Cycle Assess., 4 (5), 299–306.  Dechˆ enes, L., and Margni, M. (2011b)
                    Barnes, I., Becker, K.-H., and Wiesen, P.  Categorizing water for LCA inventory. Int.
                      (2007) Organische verbindungen und der  J. Life Cycle Assess., 16 (7), 639–651.
                      photosmog. Chem. Z., 41 (3), 200–210.  Bousquet, P., Hauglustaine, D.A., Peylin,
                    Barnthouse, L., Fava, J., Humphreys, K.,  P., Carouge, C., and Ciais, P. (2005) Two
                      Hunt, R., Laibson, L., Noesen, S., Norris,  decades of OH variability as inferred by
                      G., Owens, J., Todd, J., Vigon, B., Weitz,  an inversion of atmospheric transport and
                      K., and Young, J. (eds) (1998) Life-Cycle  chemistry of methyl chloroform. Atmos.
                      Impact Assessment: The State-of-the-Art.  Chem. Phys. Discuss., 5, 1679–1731.
                      Report of the SETAC Life-Cycle Assessment  BUWAL (1998) Brand, G., Scheidegger,
                      (LCA) Impact Assessment Workgroup,2nd  A., Schwank, O. and Braunschweig, A.
                      edn, Society of Environmental Toxicology  Bewertung in ¨ Okobilanzen mit der Methode
                      and Chemistry, Pensacola, FL.   der ¨okologischen Knappheit. ¨ Okofaktoren
                    Becker, K.H., Fricke, W., L¨ obel, J., and  1997, Schriftenreihe Umwelt Nr. 297
                      Schurath, U. (1985) Formation, transport  ¨ Okobilanzen, Bundesamt f¨ ur Umwelt,
                      and control of photochemical oxidants,  Wald und Landschaft (BUWAL), Bern.
                      in Air Pollution by Photochemical Oxidants  Brandao, M. and Mil` a i Canals, L. (2013)
                      (ed. R. Guderian (Hrsg.)), Springer-Verlag,  Global characterisation factors to assess
                      Berlin, pp. S.1–125.            land use impacts on biotic production. Int.
                    Bellekom, S., Potting, J., and Benders,  J. Life Cycle Assess., 18 (6), 1243–1252.
                      R. (2006) Feasibility of applying site-  Breedveld, L., Lafleur, M., and Blonk, H.
                      dependent impact assessment of acidifi-  (1999) A framework for actualising nor-
                      cation in LCA. Int. J. Life Cycle Assess., 11  malisation data in LCA: experiences in the
                      (6), 417–424.                   Netherlands. Int. J. Life Cycle Assess., 4 (4),
                    Beltrani, G. (1997) Safeguard subjects.  213–220.
                      The conflict between operationalization  Brentrup, F., K¨ usters, J., Lammel, J., and
                      and ethical justification. Int. J. Life Cycle  Kuhlmann, H. (2002a) Impact assessment
                      Assess., 2 (1), 45–51.          of abiotic resource consumption: concep-
                    Benetto, E., Dujet, C., and Rousseaux, P.  tual considerations. Int. J. Life Cycle Assess.,
                      (2006) Fuzzy-sets approach to noise  7 (5), 301–307.
                      impact assessment. Int. J. Life Cycle Assess., Brentrup, F., K¨ usters, J., Lammel, J., and
                      11 (4), 222–228.                Kuhlmann, H. (2002b) Life cycle impact
                    Berger, M. and Finkbeiner, M. (2010) Water  assessment of land use based on the
                      footprinting: how to address water use  hemeroby concept. Int. J. Life Cycle Assess.,
                      in life cycle assessment? Sustainability, 2,  7 (6), 339–348.
                      919–944. doi: 10.3390/su2040919  British Standards Institution (2008) Publicly
                    Berger, M. and Finkbeiner, M. (2012)  Available Specification (PAS) 2050:2008.
                      Methodological challenges in vol-  Specification for the Assessment of the
                      umetric and impact-oriented water  Life Cycle Greenhouse Gas Emissions of
   323   324   325   326   327   328   329   330   331   332   333