Page 311 - Materials Chemistry, Second Edition
P. 311

292                         Life Cycle Assessment of Wastewater Treatment


           Foley, J. M., R. A. Rozendal, C. K. Hertle, P. A. Lant, and K. Rabaey. 2010. Life cycle assess-
                ment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis
                cells. Environmental Science & Technology 44 (9): 3629–37. doi:10.1021/es100125h.
            Fruergaard, T., T. Astrup, and T. Ekvall. 2009. Energy use and recovery in waste management
                and implications for accounting of greenhouse gases and global warming contributions.
                Waste Management & Research : The Journal of the International Solid Wastes and
                Public Cleansing Association, ISWA 27 (8): 724–37. doi:10.1177/0734242X09345276.
           Georgiopoulou, M., K. Abeliotis, M. Kornaros, and G. Lyberatos. 2008. Selection of the
                best available technology for industrial wastewater treatment based on environmental
                evaluation of alternative treatment technologies: The case of milk industry. Fresenius
                Environmental Bulletin 17 (1): 111–21.
           Ghosh, S., U. K. Dairkee, R. Chowdhury, and P. Bhattacharya. 2017. Hydrogen from
                food processing wastes via photofermentation using purple non-sulfur bacteria
                (PNSB)—A review. Energy Conversion and Management 141: 299–314. doi:10.1016/j.
                enconman.2016.09.001.
           Goedkoop, M., R. Heijungs, M. Huijbregts, A. De Schryver, J. Struijs, and R. Van Zelm.
                2009. ReCiPe 2008 First Edition Report I: Characterisation.
           Gourdet, C., R. Girault, S. Berthault, M. Richard, J. Tosoni, and M. Pradel. 2016. In quest
                of environmental hotspots of sewage sludge treatment combining anaerobic digestion
                and mechanical dewatering: A life cycle assessment approach.  Journal of Cleaner
                Production 143: 1123–36. doi:10.1016/j.jclepro.2016.12.007.
           Gregson, N., M. Crang, S. Fuller, and H. Holmes. 2015. Interrogating the circular economy:
                The moral economy of resource recovery in the EU. Economy and Society 44 (2): 218–
                43. doi:10.1080/03085147.2015.1013353.
           Gu, Y., Y. Li, X. Li, P. Luo, H. Wang, Z. P. Robinson, X. Wang, and J. Wu. 2017. The fea-
                sibility and challenges of energy self-sufficient wastewater treatment plants. Applied
                Energy 204: 1463–1475. doi:10.1016/j.apenergy.2017.02.069.
           Heimersson, S., M. Svanström, C. Cederberg, and G. Peters. 2017. Improved life cycle model-
                ling of benefits from sewage sludge anaerobic digestion and land application. Resources,
                Conservation and Recycling 122: 126–34. doi:10.1016/j.resconrec.2017.01.016.
           Hospido, A., M. Carballa, M.  T. Moreira, F. Omil,  J. M. Lema, and G. Feijoo. 2010.
                Environmental  assessment  of  anaerobically  digested  sludge  reuse  in  agriculture:
                Potential impacts of emerging micropollutants. Water Research 44: 3225–3233. doi:
                10.1016/j.watres.2010.03.004.
           Hospido, A., M. T. Moreira, and G. Feijoo. 2007. A comparison of municipal wastewater treat-
                ment plants for big centres of population in Galicia (Spain). The International Journal
                of Life Cycle Assessment 13 (1): 57–64. doi: http://dx.doi.org/10.1065/lca2007.03.314.
           Hospido, A., M. T. Moreira, M. Martín, M. Rigola, and G. Feijoo. 2005. Environmental eval-
                uation of different treatment processes for sludge from urban wastewater treatments:
                anaerobic digestion versus thermal processes. The International Journal of Life Cycle
                Assessment 10 (5): 336–345. doi: http://dx.doi.org/10.1065/lca2005.05.210.
           Hospido, A., I. Sanchez, G. Rodriguez-Garcia, A. Iglesias, D. Buntner, R. Reif, M. T. Moreira,
                and G. Feijoo. 2012. Are all membrane reactors equal from an environmental point of
                view? Desalination 285: 263–70. doi:10.1016/j.desal.2011.10.011.
           Hülsen, T., D. J. Batstone, and J. Keller. 2014. Phototrophic bacteria for nutrient recovery from
                domestic wastewater. Water Research 50 (0): 18–26. doi:10.1016/j.watres.2013.10.051.
           Ioannou-Ttofa, L., S. Foteinis, E. Chatzisymeon, and D. Fatta-Kassinos. 2016. The environ-
                mental footprint of a membrane bioreactor treatment process through life cycle analy-
                sis. Science of the Total Environment 568: 306–18. doi:10.1016/j.scitotenv.2016.06.032.
           Jaouad, Y., N. Ouazzani, L. Mandi, M. Villain, and B. Marrot. 2016. Biodegradation of olive
                mill wastewater in a membrane bioreactor: Acclimation of the biomass and constraints.
                Desalination and Water Treatment 57 (18): 8109–18.
   306   307   308   309   310   311   312   313   314   315   316