Page 313 - Materials Chemistry, Second Edition
P. 313
294 Life Cycle Assessment of Wastewater Treatment
Peters, G. M., and H. V Rowley. 2009. Environmental comparison of biosolids management
systems using life cycle assessment. Environmental Science & Technology 43 (8):
2674–9. doi:10.1021/es802677t.
Pikaar, I., K. R. Sharma, S. Hu, W. Gernjak, J. Keller, and Z. Yuan. 2014. Reducing sewer
corrosion through integrated urban water management. Science 345 (6198): 812–14.
doi:10.1126/science.1251418.
Pintilie, L., C. M. Torres, C. Teodosiu, and F. Castells. 2016. Urban wastewater reclamation
for industrial reuse: An LCA case study. Journal of Cleaner Production 139: 1–14.
doi:10.1016/j.jclepro.2016.07.209.
Pradel, M., L. Aissani, J. Villot, J. C. Baudez, and V. Laforest. 2016. From waste to added
value product: Towards a paradigm shift in life cycle assessment applied to waste-
water sludge—a review. Journal of Cleaner Production 131: 60–75. doi:10.1016/
j.jclepro.2016.05.076.
Pretel, R., A. Robles, M. V. Ruano, A. Seco, and J. Ferrer. 2013. Environmental impact
of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewa-
ter at different temperatures. Bioresource Technology 149: 532–40. doi:10.1016/j.
biortech.2013.09.060.
Pretel, R., A. Robles, M. V. Ruano, A. Seco, and J. Ferrer. 2016. Economic and environ-
mental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology
as compared to aerobic-based technologies for moderate-/high-loaded urban waste-
water treatment. Journal of Environmental Management 166: 45–54. doi:10.1016/j.
jenvman.2015.10.004.
Puyol, D., E. Barry, T. Huelsen, and D. J. Batstone. 2017a. A mechanistic model for anaero-
bic phototrophs in domestic wastewater applications: Photo-anaerobic model (PAnM).
Water Research 116: 241–53. doi:10.1016/j.watres.2017.03.022.
Puyol, D., D. J. Batstone, T. Hülsen, S. Astals, M. Peces, and O. Jens. 2017b. Resource recov-
ery from wastewater by biological technologies: Opportunities, challenges and pros-
pects. Frontiers in Microbiology 7: 1–23. doi:10.3389/fmicb.2016.02106.
Renou, S., J. S. Thomas, E. Aoustin, and M. N. Pons. 2008. Influence of impact assess-
ment methods in wastewater treatment LCA. Journal of Cleaner Production 16 (10):
1098–105. doi:10.1016/j.jclepro.2007.06.003.
Schrijvers, D. L., P. Loubet, and G. Sonnemann. 2016. Developing a systematic framework
for consistent allocation in LCA. International Journal of Life Cycle Assessment 21
(7): 976–93. doi:10.1007/s11367-016-1063-3.
Skouteris, G., D. Hermosilla, P. López, C. Negro, and Á. Blanco. 2012. Anaerobic mem-
brane bioreactors for wastewater treatment: A review. Chemical Engineering Journal
198–199: 138–48. doi:10.1016/j.cej.2012.05.070.
Smith, A. L., L. B. Stadler, L. Cao, N. G. Love, L. Raskin, and J. Steven. 2014. Navigating
wastewater energy recovery strategies: A life cycle comparison of wastewater energy
recovery strategies: Anaerobic membrane bioreactor and high rate activated sludge
with anaerobic digestion. Environmental Science & Technology 48: 5972–81.
Spirito, C. M., H. Richter, K. Rabaey, A. J. M. Stams, and L. T. Angenent. 2014. Chain
elongation in anaerobic reactor microbiomes to recover resources from waste. Current
Opinion in Biotechnology 27: 115–22. doi:10.1016/j.copbio.2014.01.003.
Suh, Y. J., and P. Rousseaux. 2002. An LCA of alternative wastewater sludge treatment sce-
narios. Resources, Conservation and Recycling 35: 191–200.
Vaneeckhaute, C., V. Lebuf, E. Michels, E. Belia, P. A. Vanrolleghem, F. M. G. Tack, and
E. Meers. 2017. Nutrient recovery from digestate: Systematic technology review
and product classification. Waste and Biomass Valorization, 1–20. doi: 10.1007/
s12649-016-9642-x.