Page 10 - 3D Fibre Reinforced Polymer Composites
P. 10
3.6.1 Tool Materials 57
3.6.2 Heating and Cooling 58
3.6.3 Resin Injection and Venting 58
3.6.4 Sealing 59
3.7 Component Quality 60
3.8 Summary 61
Chapter 4 Micromechanics Models for Mechanical Properties 63
4.1 Introduction 63
4.2 Fundamentals in Micromechanics 64
4.2.1 Generalized Hooke’s Law 64
4.2.2 Representative Volume Element and Effective Properties 66
4.2.3 Rules of Mixtures and Mori-Tanaka Theory 68
4.2.4 Unit Cell Models for Textile Composites 70
4.3 Unit Cell Models for 2D Woven Composites 70
4.3.1 One-Dimensional (1D) Models 71
4.3.2 Two-Dimensional (2D) Models 78
4.3.3 Three-Dimensional (3D) Models 81
4.3.4 Applications of Finite Element Methods 88
4.4 Models for 3D Woven Composites 90
4.4.1 Orientation Averaging Models 91
4.4.2 Mixed Iso-Stress and Iso-Strain Models 92
4.4.3 Applications of Finite Element Methods 96
4.4.3.1 3D Finite Element Modelling Scheme 97
4.4.3.2 Binary Models 99
4.5 Unit Cell Models for Braided and Knitted Composites 100
4.5.1 Braided Composites 100
4.5.2 Knitted Composites 103
4.6 Failure Strength Prediction 104
Chapter 5 3D Woven Composites 1 07
5.1 Introduction 1 07
5.2 Microstructural Properties of 3D Woven Composites 108
5.3 In-Plane Mechanical Properties of 3D Woven Composites 113
5.3.1 Tensile Properties 113
5.3.2 Compressive Properties 123
5.3.3 Flexural Properties 126
5.3.4 Interlaminar Shear Properties 127
5.4 Interlaminar Fracture Properties of 3D Woven Composites 128
5.5 Impact Damage Tolerance of 3D Woven Composites 132
5.6 3D Woven Distance Fabric Composites 133
Chapter 6 Braided Composite Materials 137
6.1 Introduction 137
6.2 In-Plane Mechanical Properties 138
6.2.1 Influence of Braid Pattern and Edge Condition 138
6.2.2 Influence of Braiding Process 140
6.2.3 Influence of Yarn Size 141
6.2.4 Comparison with 2D Laminates 143