Page 248 - A Comprehensive Guide to Solar Energy Systems
P. 248
Chapter 11 • Hybrid Organic–Inorganic Metal Halide Perovskite Solar Cells 251
[65] Li H, Shi W, Huang W, yao E-P, Han J, Chen Z, et al: Carbon quantum dots/TiOx electron transport layer
boosts efficiency of planar heterojunction perovskite solar cells to 19%, Nano Lett 17:2328–2335, 2017.
[66] Heo JH, Han HJ, Kim d, Ahn TK, Im SH: Hysteresis-less inverted CH 3 NH 3 PbI 3 planar perovskite hy-
brid solar cells with 18.1% power conversion efficiency, Energy Environ Sci 8:1602–1608, 2015.
[67] Bi C, Wang Q, Shao y, yuan y, Xiao Z, Huang J: Non-wetting surface-driven high-aspect-ratio crystal-
line grain growth for efficient hybrid perovskite solar cells, Nat Commun:6, 2015.
[68] dong Q, yuan y, Shao y, Fang y, Wang Q, Huang J: Abnormal crystal growth in CH 3 NH 3 PbI 3−x Cl x using
a multi-cycle solution coating process, Energy Environ Sci 8:2464–2470, 2015.
[69] Nie W, Tsai H, Asadpour R, Blancon J-C, Neukirch AJ, Gupta G, et al: High-efficiency solution-pro-
cessed perovskite solar cells with millimeter-scale grains, Science 347:522–525, 2015.
[70] you J, Meng L, Song T-B, Guo T-F, yang yM, Chang W-H, et al: Improved air stability of perovskite solar
cells via solution-processed metal oxide transport layers, Nat Nanotechnol 11:75–81, 2016.
[71] Liang PW, Chueh CC, Williams ST, Jen AKy: Roles of fullerene- based interlayers in enhancing the
performance of organometal perovskite thin- film solar cells, Adv Energy Mater:5, 2015.
[72] Park JH, Seo J, Park S, Shin SS, Kim yC, Jeon NJ, et al: Efficient CH 3 NH 3 PbI 3 perovskite solar cells
employing nanostructured p- type NiO electrode formed by a pulsed laser deposition, Adv Mater
27:4013–4019, 2015.
[73] Rong y, Tang Z, Zhao y, Zhong X, Venkatesan S, Graham H, et al: Solvent engineering towards con-
trolled grain growth in perovskite planar heterojunction solar cells, Nanoscale 7:10595–10599, 2015.
[74] Chen H, Wei Z, He H, Zheng X, Wong KS, yang S: Solvent engineering boosts the efficiency of paint-
able carbon-based perovskite solar cells to beyond 14%, Adv Energy Mater 6, 2016, 1502087.
[75] Li W, Fan J, Li J, Mai y, Wang L: Controllable grain morphology of perovskite absorber film by molecu-
lar self-assembly toward efficient solar cell exceeding 17%, J Am Chem Soc 137:10399–10405, 2015.
[76] Wu y, Islam A, yang X, Qin C, Liu J, Zhang K, et al: Retarding the crystallization of PbI 2 for highly
reproducible planar-structured perovskite solar cells via sequential deposition, Energy Environ Sci
7:2934–2938, 2014.
[77] Kim H-B, Choi H, Jeong J, Kim S, Walker B, Song S, et al: Mixed solvents for the optimization of
morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells, Nanoscale
6:6679–6683, 2014.
[78] Sakai N, Pathak S, Chen H-W, Haghighirad AA, Stranks Sd, Miyasaka T, et al: The mechanism of tol-
uene-assisted crystallization of organic–inorganic perovskites for highly efficient solar cells, J Mater
Chem A 4:4464–4471, 2016.
[79] Xiao M, Huang F, Huang W, dkhissi y, Zhu y, Etheridge J, et al: A fast deposition-crystallization pro-
cedure for highly efficient lead iodide perovskite thin-film solar cells, Angew Chem Int Ed 53:9898–
9903, 2014.
[80] Zhou y, yang M, Wu W, Vasiliev AL, Zhu K, Padture NP: Room-temperature crystallization of hybrid-
perovskite thin films via solvent–solvent extraction for high-performance solar cells, J Mater Chem A
3:8178–8184, 2015.
[81] Lin Q, Armin A, Burn PL, Meredith P: Organohalide perovskites for solar energy conversion, Acc
Chem Res 49:545–553, 2016.
[82] dualeh A, Tétreault N, Moehl T, Gao P, Nazeeruddin MK, Grätzel M: Effect of annealing temperature
on film morphology of organic–inorganic hybrid pervoskite solid- state solar cells, Adv Funct Mater
24:3250–3258, 2014.
[83] de Quilettes dW, Vorpahl SM, Stranks Sd, Nagaoka H, Eperon GE, Ziffer ME, et al: Impact of micro-
structure on local carrier lifetime in perovskite solar cells, Science 348:683–686, 2015.
[84] Tosun BS, Hillhouse HW: Enhanced carrier lifetimes of pure iodide hybrid perovskite via vapor-
equilibrated re-growth (VERG), J Phys Chem Lett 6:2503–2508, 2015.