Page 251 - A Comprehensive Guide to Solar Energy Systems
P. 251

254  A COMPREHENSIVE GUIdE TO SOLAR ENERGy SySTEMS



               [125] Aitola K, domanski K, Correa-Baena J-P, Sveinbjörnsson K, Saliba M, Abate A, et al: High temper-
                 ature-stable perovskite solar cell based on low-cost carbon nanotube hole contact, Adv Mater 29,
                 2017, 1606398.
               [126] Habisreutinger SN, Leijtens T, Eperon GE, Stranks Sd, Nicholas RJ, Snaith HJ: Carbon nanotube/
                 polymer  composites  as  a  highly  stable  hole  collection  layer  in  perovskite  solar  cells,  Nano  Lett
                 14:5561–5568, 2014.
               [127] Wang F, Shimazaki A, yang F, Kanahashi K, Matsuki K, Miyauchi y, et al: Highly efficient and sta-
                 ble perovskite solar cells by interfacial engineering using solution-processed polymer layer, J Phys
                 Chem C, 2017.
               [128] Leijtens T, Eperon GE, Noel NK, Habisreutinger SN, Petrozza A, Snaith HJ: Stability of metal halide
                 perovskite solar cells, Adv Energy Mater 5:1500963, 2015.
               [129] Jeon NJ, Noh JH, yang WS, Kim yC, Ryu S, Seo J, et al: Compositional engineering of perovskite mate-
                 rials for high-performance solar cells, Nature 517:476–480, 2015.
               [130] Snaith HJ, Abate A, Ball JM, Eperon GE, Leijtens T, Noel NK, et al: Anomalous hysteresis in perovskite
                 solar cells, J Phys Chem Lett 5:1511–1515, 2014.
               [131] Wei J, Zhao y, Li H, Li G, Pan J, Xu d, et al: Hysteresis analysis based on the ferroelectric effect in hy-
                 brid perovskite solar cells, J Phys Chem Lett 5:3937–3945, 2014.
               [132] Frost JM, Butler KT, Walsh A: Molecular ferroelectric contributions to anomalous hysteresis in hybrid
                 perovskite solar cells, APL Mater 2:081506, 2014.
               [133] Tress W, Marinova N, Moehl T, Zakeeruddin S, Nazeeruddin MK, Grätzel M: Understanding the rate-
                 dependent J–V hysteresis, slow time component, and aging in CH 3 NH 3 PbI 3  perovskite solar cells: the
                 role of a compensated electric field, Energy Environ Sci 8:995–1004, 2015.
               [134] Eames C, Frost JM, Barnes PR, O’regan BC, Walsh A, Islam MS: Ionic transport in hybrid lead iodide
                 perovskite solar cells, Nat Commun:6, 2015.
               [135] Bergmann VW, Weber SA, Ramos FJ, Nazeeruddin MK, Grätzel M, Li d, et al: Real-space observation
                 of unbalanced charge distribution inside a perovskite-sensitized solar cell, Nat Commun:5, 2014.
               [136] Kim H-S, Park N-G: Parameters affecting I–V hysteresis of CH 3 NH 3 PbI 3  perovskite solar cells: effects
                 of perovskite crystal size and mesoporous TiO 2  layer, J Phys Chem Lett 5:2927–2934, 2014.
               [137] Xiao Z, Bi C, Shao y, dong Q, Wang Q, yuan y, et al: Efficient, high yield perovskite photovoltaic de-
                 vices grown by interdiffusion of solution-processed precursor stacking layers, Energy Environ Sci
                 7:2619–2623, 2014.
               [138] Bryant d, Wheeler S, O’Regan BC, Watson T, Barnes PR, Worsley d, et al: Observable hysteresis at low
                 temperature in “hysteresis free” organic–inorganic lead halide perovskite solar cells, J Phys Chem
                 Lett 6:3190–3194, 2015.
   246   247   248   249   250   251   252   253   254   255   256