Page 249 - A Comprehensive Guide to Solar Energy Systems
P. 249
252 A COMPREHENSIVE GUIdE TO SOLAR ENERGy SySTEMS
[85] Xiao Z, dong Q, Bi C, Shao y, yuan y, Huang J: Solvent annealing of perovskite- induced crystal growth
for photovoltaic- device efficiency enhancement, Adv Mater 26:6503–6509, 2014.
[86] Troughton J, Charbonneau C, Carnie MJ, davies ML, Worsley dA, Watson TM: Rapid processing of
perovskite solar cells in under 2.5 seconds, J Mater Chem A 3:9123–9127, 2015.
[87] Troughton J, Carnie MJ, davies ML, Charbonneau C, Jewell EH, Worsley dA, et al: Photonic flash-
annealing of lead halide perovskite solar cells in 1 ms, J Mater Chem A 4:3471–3476, 2016.
[88] Lavery BW, Kumari S, Konermann H, draper GL, Spurgeon J, druffel T: Intense pulsed light sintering
of CH 3 NH 3 PbI 3 solar cells, ACS Appl Mater Interfaces 8:8419–8426, 2016.
[89] Saliba M, Tan KW, Sai H, Moore dT, Scott T, Zhang W, et al: Influence of thermal processing pro-
tocol upon the crystallization and photovoltaic performance of organic–inorganic lead trihalide
perovskites, J Phys Chem C, 2014.
[90] Noh JH, Im SH, Heo JH, Mandal TN, Seok SI: Chemical management for colorful, efficient, and stable
inorganic–organic hybrid nanostructured solar cells, Nano Lett 13:1764–1769, 2013.
[91] Koh TM, Fu K, Fang y, Chen S, Sum TC, Mathews N, et al: Formamidinium-containing metal-halide:
an alternative material for near-IR absorption perovskite solar cells, J Phys Chem C 118:16458–16462,
2014.
[92] Stoumpos CC, Malliakas Cd, Kanatzidis MG: Semiconducting tin and lead iodide perovskites with
organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties,
Inorg Chem 52:9019–9038, 2013.
[93] Pellet N, Gao P, Gregori G, yang T-y, Nazeeruddin MK, Maier J, et al: Mixed-organic-cation perovskite
photovoltaics for enhanced solar-light harvesting, Angew Chem Int Ed 53:3151–3157, 2014.
[94] Hao F, Stoumpos CC, Cao dH, Chang RPH, Kanatzidis MG: Lead-free solid-state organic-inorganic
halide perovskite solar cells, Nat Photonics 8:489–494, 2014.
[95] Noel NK, Stranks Sd, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A-A, et al: Lead-free organ-
ic-inorganic tin halide perovskites for photovoltaic applications, Energy Environ Sci 7:3061–3068,
2014.
[96] Hao F, Stoumpos CC, Guo P, Zhou N, Marks TJ, Chang RPH, et al: Solvent-mediated crystallization of
CH 3 NH 3 SnI 3 films for heterojunction depleted perovskite solar cells, J Am Chem Soc 137:11445–11452,
2015.
[97] Umari P, Mosconi E, de Angelis F: Relativistic GW calculations on CH 3 NH 3 PbI 3 and CH 3 NH 3 SnI 3
perovskites for solar cell applications, Sci Rep:4, 2014.
[98] Mel’nikova SV, Zaitsev AI: Ferroelectric phase transition in Cs 3 Bi 2I9 , Phys Solid State 39:1652–1654,
1997.
[99] Ivanov yN, Sukhovskii AA, Lisin VV, Aleksandrova IP: Phase transitions of Cs 3 Sb 2I9 , Cs 3 Bi 2I9 , and Cs-
3 Bi 2 Br 9 crystals, Inorg Mater 37:623–627, 2001.
[100] Gubbala S, Chakrapani V, Kumar V, Sunkara MK: Band- edge engineered hybrid structures for dye-
sensitized solar cells based on SnO 2 nanowires, Adv Funct Mater 18:2411–2418, 2008.
[101] Son d-y, Im J-H, Kim H-S, Park N-G: 11% efficient perovskite solar cell based on ZnO nanorods: an
effective charge collection system, J Phys Chem C 118:16567–16573, 2014.
[102] Zhang R, Fei C, Li B, Fu H, Tian J, Cao G: Continuous size tuning of monodispersed ZnO nanoparti-
cles and its size effect on the performance of perovskite solar cells, ACS Appl Mater Interfaces 9:9785–
9794, 2017.
[103] yun J, Ryu J, Lee J, yu H, Jang J: SiO 2 /TiO 2 based hollow nanostructures as scaffold layers and Al-
doping in the electron transfer layer for efficient perovskite solar cells, J Mater Chem A 4:1306–1311,
2016.
[104] Mei A, Li X, Liu L, Ku Z, Liu T, Rong y, et al: A hole-conductor–free, fully printable mesoscopic
perovskite solar cell with high stability, Science 345:295–298, 2014.