Page 273 - A Comprehensive Guide to Solar Energy Systems
P. 273
276 A COmPreHenSIVe GuIde TO SOlAr enerGy SySTemS
[38] Cui y, yao HF, Gao BW, Qin yP, Zhang SQ, yang B, He C, Xu BW, Hou JH: Fine-tuned photoactive and
interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell,
J Am Chem Soc 139:7302–7309, 2017.
[39] Sullivan P, Schumann S, da Campo r, Howells T, duraud A, Shipman m, Hatton rA, Jones TS: ultra-
high voltage multijunction organic solar cells for low-power electronic applications, Adv Energy
Mater 3:239–244, 2013.
[40] Scharber mC: On the efficiency limit of conjugated polymer: fullerene-based bulk heterojunction
solar cells, Adv Mater 28:1994–2001, 2016.
[41] dennler G, Scharber mC, Ameri T, denk P, Forberich K, Waldauf C, Brabec CJ: design rules for donors
in bulk-heterojunction tandem solar cells-towards 15 % energy-conversion efficiency, Adv Mater
20:579–583, 2008.
[42] Koster lJA, Shaheen Se, Hummelen JC: Pathways to a new efficiency regime for organic solar cells,
Adv Energy Mater 2:1246–1253, 2012.
[43] leznoff, CC, lever ABP, editors. Phthalocyanines: properties and applications. VCH publishers Inc.
[44] li S, ye l, Zhao W, Zhang S, mukherjee S, Ade H, Hou J: energy-level modulation of small-molecule
electron acceptors to achieve over 12% efficiency in polymer solar cells, Adv Mater 28:9423–9429,
2016.
[45] eley dd. Phthalocyanines as semiconductors. nature 1948;162:819 and Vartanyan AT. J Phys Chem
u.S.S.r. 1948;22:769.
[46] yang Jl, Schumann S, Hatton rA, Jones TS: Copper hexadecafluorophthalocyanine (F16CuPc) as
an electron accepting material in bilayer small molecule organic photovoltaic cells, Org Electron
11:1399–1402, 2010.
[47] mazzio KA, luscombe CK: The future of organic photovoltaics, Chem Soc Rev 44:78–90, 2015.
[48] li W, Furlan A, Hendriks KH, Wienk mm, Janssen rAJ. efficient tandem and triple-junction polymer
solar cells. J Am Chem Soc 2013;135:5529–5532.
[49] Armin A, yazmaciyan A, Hambsch m, li J, Burn Pl, meredith P: electro-optics of conventional and
inverted thick junction organic solar cells, ACS Photonics 2:1745–1754, 2015.
[50] Armin A, Hambsch m, Wolfer P, Jin H, li J, Shi Z, Burn Pl, meredith P: efficient, large area, and thick
junction polymer solar cells with balanced mobilities and low defect densities, Adv Energy Mater
5:1401221, 2015.
[51] Gasparini n, lucera l, Salvador m, Prosa m, Spyropoulos Gd, Kubis P, egelhaaf H-J, Brabec CJ, Ameri
T: High-performance ternary organic solar cells with thick active layer exceeding 11% efficiency, En-
ergy Environ Sci 10:885–892, 2017.
[52] Sullivan P, duraud A, Hancox I, Beaumont n, mirri G, Tucker JHr, Hatton rA, Shipman m, Jones TS:
Halogenated boron subphthalocyanines as light harvesting electron acceptors in organic photovol-
taics, Adv Energy Mater 1:352–355, 2011.
[53] yao H, Chen y, Qin y, yu r, Cui y, yang B, li S, Zhang K, Hou J: design and synthesis of a low bandgap
small molecule acceptor for efficient polymer solar cells, Adv Mater 28:8283–8287, 2016.
[54] Chen C-C, Chang WH, yoshimura K, Ohya K, you J, Gao J, Hong Z, yang y: An efficient triple-junction
polymer solar cell having a power conversion efficiency exceeding 11%, Adv Mater 26:5670–5677,
2014.
[55] nam m, Cha m, lee HH, Hur K, lee K-T, yoo J, Han IK, Kwon SJ, Ko d-H: long-term efficient organic
photovoltaics based on quaternary bulk heterojunctions, Nat Commun 8:14068, 2017.
[56] An Q, Zhang F, Zhang J, Tang W, deng Z, Hu B: Versatile ternary organic solar cells: a critical review,
Energy Environ Sci 9:281–322, 2016.
[57] de Gier Hd, Jahani F, Broer r, Hummelen JC, Havenith rWA: Promising strategy to improve charge
separation in organic photovoltaics: installing permanent dipoles in PCBm analogues, J Phys Chem
A 120:4664–4671, 2016.