Page 274 - A Comprehensive Guide to Solar Energy Systems
P. 274
Chapter 12 • Organic Photovoltaics 277
[58] Cho n, Schlenker CW, Knesting Km, Koelsch P, yip H-l, Ginger dS, Jen AKy: High-dielectric constant
side-chain polymers show reduced non-geminate recombination in heterojunction solar cells, Adv
Energy Mater 4:1301857, 2014.
[59] Chueh CC, Crump m, Jen AKy: Optical enhancement via electrode designs for high-performance
polymer solar cells, Adv Funct Mater 26:321–340, 2016.
[60] Stec Hm, Hutter OS, Hatton rA: Plasmon-active nano-aperture window electrodes for organic pho-
tovoltaics, Adv Energy Mater 3:193–199, 2013.
[61] Pereira HJ, Hutter OS, dabera Gdmr, rochford lA, Hatton rA: Copper light-catching electrodes for
organic photovoltaics, Sus Energy Fuels 1:859–865, 2017.
[62] Giannouli m, drakonakis Vm, Savva A, eleftheriou P, Florides G, Choulis SA: methods for improving
the lifetime performance of organic photovoltaics with low-costing encapsulation, Chem Phys Chem
16:1134–1154, 2015.
[63] www.youtube.com/watch?v=uXQepVrtGtw ultra-thin glass – coring willow glass.
[64] Hutter OS, Stec Hm, Hatton rA: An indium-free low work function window electrode for organic
photovoltaics which improves with in situ oxidation, Adv Mater 25:284–288, 2013.
[65] Xie F, Choy WCH, Wang C, li X, Zhang S, Hou J: low-temperature solution-processed hydrogen mo-
lybdenum and vanadium bronzes for an efficient hole-transport layer in organic electronics, Adv
Mater 25:2051–2055, 2013.
[66] yin Z, Wei J, Zheng Q: Interfacial materials for organic solar cells: recent advances and perspectives,
Adv Sci 3:1500362, 2016.
[67] Osaka I, mcCullough rd: Advances in molecular design and synthesis of regioregular polythio-
phenes, Acc Chem Res 41:1202–1214, 2008.
[68] Bannock JH, Krishnadasan SH, nightingale Am, yau CP, Khaw K, Burkitt d, Halls JJm, Heeney m, de
mello JC: Continuous synthesis of device-grade semiconducting polymers in droplet-based micro-
reactors, Adv Func Mater 23:2123–2129, 2012.
[69] Zhao J, li y, yang G, Jiang K, lin H, Ade H, ma W, yan H: efficient organic solar cells processed from
hydrocarbon solvents, Nat Energy 1:15027, 2016.
[70] mcdowell C, Bazan GC: Organic solar cells processed from green solvents, Curr Opin Green Sustain-
able Chem 5:49–54, 2017.
[71] Cao W, li J, Chen H, Xue J: Transparent electrodes for organic optoelectronic devices: a review, J Pho-
ton Energy 4:040990, 2014.
[72] Jeong S, Jungn S, Kang H, lee d, Choi S-B, Kim S, Park B, yu K, lee J, lee K: role of polymeric metal
nucleation inducers in fabricating large-area, flexible, and transparent electrodes for printable elec-
tronics, Adv Funct Mater 27:1–8, 2017.
[73] Jin H, Pivrikas A, lee KH, Aljada m, Hambsch m, Burn Pl, meredith P: Factors influencing the effi-
ciency of current collection in large area, monolithic organic solar cells, Adv Energy Mater 2:1338, 2012.
[74] lagrange m, Sannicolo T, muñoz-rojas d, lohan BG, Khan A, Anikin m, Jiménez C, Bruckert F,
Bréchet y, Bellet d: understanding the mechanisms leading to failure in metallic nanowire-based
transparent heaters, and solution for stability enhancement, Nanotech 28:055709, 2017.
[75] mulligan CJ, Wilson m, Bryant G, Vaughan B, Zhou X, Belcher J, dastoor PC: A projection of commer-
cial-scale organic photovoltaic module costs, Sol Energ Mat Sol C 120:9–17, 2014.
[76] Zhao G, Wang W, Bae T-S, lee S-G, mun CW, lee S, yu H, lee GH, Song m, yun J: Stable ultrathin par-
tially oxidized copper film electrode for highly efficient flexible solar cells, Nat Commun 6:8830, 2015.
[77] Hutter OS, Hatton rA: A hybrid copper:tungsten suboxide window electrode for organic photovolta-
ics, Adv Mater 27:326–331, 2015.
[78] Hutter OS. nanostructured copper electrodes for organic photovoltaics [Phd Thesis]. university of
Warwick; 2015.