Page 314 - A Comprehensive Guide to Solar Energy Systems
P. 314
318 A ComPreHenSIVe GuIde To SolAr enerGy SySTemS
[6] Buker mS, riffat SB: Building integrated solar thermal collectors—a review, Renew Sustain Energy
Rev 51:327–346, 2015.
[7] Pantic S, Candanedo l, Athienitis AK: modeling of energy performance of a house with three config-
urations of building-integrated photovoltaic/thermal systems, Energy Build 42(10):1779–1789, 2010.
[8] Athienitis AK, Bambara J, o’neill B, Faille J: A prototype photovoltaic/thermal system integrated
with transpired collector, Sol Energy 85(1):139–153, 2011.
[9] Vats K, Tiwari Gn: energy and exergy analysis of a building integrated semitransparent photovoltaic
thermal (BISPVT) system, Appl Energy 96:409–416, 2012.
[10] Gueymard CA, duPont WC: Spectral effects on the transmittance, solar heat gain, and performance
rating of glazing systems, Sol Energy 83(6):940–953, 2009.
[11] Parida B, Iniyan S, Goic r: A review of solar photovoltaic technologies, Renew Sustain Energy Rev
15(3):1625–1636, 2011.
[12] Sun l, lu l, yang H: optimum design of shading-type building-integrated photovoltaic claddings
with different surface azimuth angles, Appl Energy 90(1):233–240, 2012.
[13] Chow TT: A review on photovoltaic/thermal hybrid solar technology, Appl Energy 87(2):365–379, 2010.
[14] Jelle BP: Building integrated photovoltaics: a concise description of the current state of the art and
possible research pathways, Energies 9(1):21, 2015.
[15] muller J, Hinken d, Blankemeyer S, Kohlenberg H, Sonntag u, Bothe K, dullweber T, Kontges m,
Brendel r: resistive power loss analysis of PV modules made from halved 15.6 #x2009; #x00d7;
#x2009;15.6 cm silicon PerC solar cells with efficiencies up to 20.0 #x0025;, IEEE J Photovolt
2
5(1):189–194, 2015.
[16] He W, Chow T-T, Ji J, lu J, Pei G, Chan l: Hybrid photovoltaic and thermal solar-collector designed for
natural circulation of water, Appl Energy 83(3):199–210, 2006.
[17] Solar panel temperature—facts and tips. Available from: http://www.solar-facts-and-advice.com/
solar-panel-temperature.html.
[18] Skoplaki e, Palyvos JA: on the temperature dependence of photovoltaic module electrical perfor-
mance: a review of efficiency/power correlations, Sol Energy 83(5):614–624, 2009.
[19] Agrawal B, Tiwari Gn: Building integrated photovoltaic thermal systems: for sustainable develop-
ments, london, 2011, royal Society of Chemistry, Burlington House.
[20] nagano K, mochida T, Shimakura K, murashita K, Takeda S: development of thermal-photovoltaic
hybrid exterior wallboards incorporating PV cells in and their winter performances, Sol Energy Mater
Sol Cells 77(3):265–282, 2003.
[21] yang T, Athienitis AK: A study of design options for a building integrated photovoltaic/thermal
(BIPV/T) system with glazed air collector and multiple inlets, Sol Energy 104:82–92, 2014.
[22] yang T, Athienitis AK: experimental investigation of a two-inlet air-based building integrated photo-
voltaic/thermal (BIPV/T) system, Appl Energy 159:70–79, 2015.
[23] Anderson Tn, duke m, morrison Gl, Carson JK: Performance of a building integrated photovoltaic/
thermal (BIPVT) solar collector, Sol Energy 83(4):445–455, 2009.
[24] Corbin Cd, Zhai ZJ: experimental and numerical investigation on thermal and electrical performance
of a building integrated photovoltaic–thermal collector system, Energy Build 42(1):76–82, 2010.
[25] Ghani F, Duke M, Carson JK: Effect of flow distribution on the photovoltaic performance of a building
integrated photovoltaic/thermal (BIPV/T) collector, Sol Energy 86(5):1518–1530, 2012.
[26] Ibrahim A, Othman MY, Ruslan MH, Mat S, Sopian K: Recent advances in flat plate photovoltaic/
thermal (PV/T) solar collectors, Renew Sustain Energy Rev 15(1):352–365, 2011.
[27] Kumar A, Baredar P, Qureshi u: Historical and recent development of photovoltaic thermal (PVT)
technologies, Renew Sustain Energy Rev 42:1428–1436, 2015.