Page 365 - A Comprehensive Guide to Solar Energy Systems
P. 365

370  A ComPRehensiVe Guide To soLAR eneRGy sysTems



               [11]  Bätzner dL, Romeo A, Terheggen m, döbeli m, Zogg h, Tiwari An: stability aspects in CdTe/Cds solar
                 cells, Thin solid Films 451–452:536–543, 2004.
               [12]  Kranz L, Gretener C, Perrenoud J, et al: Tailoring impurity distribution in polycrystalline cdte solar
                 cells for enhanced minority carrier lifetime, Adv energy mater 4(7), 2014.
               [13]  Zeng G, Zhang J, Li B, Wu L, Li W, Feng L: effect of deposition temperature on the properties of CdTe
                 thin films prepared by close-spaced sublimation, J electron mater 44(8):2786–2791, 2015.
               [14]  nakada T, hirabayashi y, Tokado T, ohmori d, mise T: novel device structure for Cu(in,Ga)se2 thin
                 film solar cells using transparent conducting oxide back and front contacts, Solar Energy 77(6):739–
                 747, 2004.
               [15]  Wuerz R, eicke A, Kessler F, Paetel s, efimenko s, schlegel C: CiGs thin-film solar cells and modules
                 on enamelled steel substrates, Solar Energy Mater Sol Cells 100:132–137, 2012.
                     ˘
               [16]  Chirila A, Reinhard P, Pianezzi F, et al: Potassium-induced surface modification of Cu(in,Ga)se2 thin
                 films for high-efficiency solar cells, Nat Mater 12(12):1107–1111, 2013.
               [17]  Jackson P, hariskos d, Wuerz R, Wischmann W, Powalla m: Compositional investigation of potassi-
                 um doped Cu(in,Ga)se2 solar cells with efficiencies up to 20.8%, Phys Status Solidi – Rapid Res Lett
                 8(3):219–222, 2014.
               [18]  Feurer T, Reinhard P, Avancini e, et al: Progress in thin film CiGs photovoltaics – Research and devel-
                 opment, manufacturing, and applications, Prog Photovoltaics Res Appl 25(7):645–667, 2017.
               [19]  hodes G. Perovskite-Based solar Cells; 2013, 342, (october), p. 317–319.
               [20]  Green mA: Thin-film solar cells: review of materials, technologies and commercial status, J Mater Sci
                 Mater Electron 18:15–19, 2007.
               [21]  Carabe J, Gandia JJ: Thin-film-silicon solar cells, Opto-Electron Rev 12(1):1–6, 2004.
               [22]  Kamalisarvestani m, saidur R, mekhilef s, Javadi Fs: Performance, materials and coating technologies
                 of thermochromic thin films on smart windows, Renew Sustain Energy Rev 26:353–364, 2013.
               [23]  Perrenoud J, schaffner B, Buecheler s, Tiwari An: Fabrication of flexible CdTe solar modules with
                 monolithic cell interconnection, Solar Energy Mater Sol Cells 95(Suppl. 1):S8–S12, 2011.
               [24]  Compaan Ad, Gupta A, Lee s, Wang s, drayton J: high efficiency, magnetron sputtered Cds/CdTe
                 solar cells, Solar Energy 77(6):815–822, 2004.
               [25]  sharma s, Jain KK, sharma A: solar Cells: in research and applications—A review, Mater Sci Appl
                 6(12):1145–1155, 2015.
               [26]  staebler dL, Wronski CR: Reversible conductivity changes in discharge-produced amorphous si, Appl
                 Phys Lett 31(4):292–294, 1977.
               [27]  yang s, Fu W, Zhang Z, Chen h, Li C-Z: Recent advances in perovskite solar cells: efficiency, stability and
                 lead-free perovskite 5(23):11462–11482, 2017.
   360   361   362   363   364   365   366   367   368   369   370