Page 116 - Hybrid Enhanced Oil Recovery Using Smart Waterflooding
P. 116
108 Hybrid Enhanced Oil Recovery using Smart Waterflooding
Brattekås, B., Graue, A., & Seright, R. (2016). Low-salinity chase Lumpur, Malaysia, 20e23 March. https://doi.org/10.4043/
waterfloods improve performance of Cr(III)-Acetate hydro- 28211-MS.
lyzed polyacrylamide gel in fractured cores. SPE Reservoir Graiffin, W. C. (1954). Calculation of HLB values of non-ionic
Evaluation and Engineering, 19(02), 331e339. https:// surfactants. Journal of Cosmetic Science, 5(4), 249e256.
doi.org/10.2118/173749-PA. Griffin, W. C. (1949). Classification of surface-active agents by
Brattekås, B., & Seright, R. S. (2018). Implications for improved "HLB". Journal of Cosmetic Science, 1(5), 311e326.
polymer gel conformance control during low-salinity Gupta, S. P., & Greenkorn, R. A. (1974). Determination of
chase-floods in fractured carbonates. Journal of Petroleum dispersion and nonlinear adsorption parameters for flow
Science and Engineering, 163, 661e670. https://doi.org/ in porous media. Water Resources Research, 10(4),
10.1016/j.petrol.2017.10.033. 839e846. https://doi.org/10.1029/WR010i004p00839.
Carreau, P. J. (1972). Rheological equations from molecular Hand, D. B. (1929). Dineric distribution. The Journal of Physical
network theories. Transactions of the Society of Rheology, Chemistry, 34(9), 1961e2000. https://doi.org/10.1021/
16(1), 99e127. https://doi.org/10.1122/1.549276. j150315a009.
Chauveteau, G. (1982). Rodlike polymer solution flow Healy, R. N., Reed, R. L., & Stenmark, D. G. (1976). Multiphase
through fine pores: Influence of pore size on rheological microemulsion systems. SPE Journal, 16(03), 147e160.
behavior. Journal of Rheology, 26(2), 111e142. https:// https://doi.org/10.2118/5565-PA.
doi.org/10.1122/1.549660. Hosseini-Nasab, S. M., Padalkar, C., Battistutta, E., &
Clarke, A., Howe, A. M., Mitchell, J., Staniland, J., & Zitha, P. L. J. (2016). Mechanistic modeling of the alka-
Hawkes, L. A. (2016). How viscoelastic-polymer flooding line/surfactant/polymer flooding process under sub-
enhances displacement efficiency. SPE Journal, 21(03), optimum salinity conditions for enhanced oil recovery.
675e687. https://doi.org/10.2118/174654-PA. Industrial and Engineering Chemistry Research, 55(24),
Dang, C., Nghiem, L., Fedutenko, E., Gorucu, E., Yang, C., & 6875e6888. https://doi.org/10.1021/acs.iecr.6b01094.
Mirzabozorg, A. (2018a). Application of artificial intelli- Hosseinzade Khanamiri, H., Baltzersen Enge, I., Nourani, M.,
gence for mechanistic modeling and probabilistic fore- Stensen, J.Å., Torsæter, O., & Hadia, N. (2016). EOR by
casting of hybrid low salinity chemical flooding. In Paper low salinity water and surfactant at low concentration:
presented at the SPE annual technical conference and exhibition, Impact of injection and in situ brine composition. Energy
Dallas, Texas, USA, 24e26 September. https://doi.org/ and Fuels, 30(4), 2705e2713. https://doi.org/10.1021/
10.2118/191474-MS. acs.energyfuels.5b02899.
Dang, C., Nghiem, L., Nguyen, N., Yang, C., Chen, Z., & Bae, W. Hosseinzade Khanamiri, H., Nourani, M., Tichelkamp, T.,
(2018b). Modeling and optimization of alkaline- Stensen, J.Å., Øye, G., & Torsæter, O. (2016). Low-
surfactant-polymer flooding and hybrid enhanced oil salinity-surfactant enhanced oil recovery (EOR) with a
recovery processes. Journal of Petroleum Science and Engineer- new surfactant blend: Effect of calcium cations. Energy
ing, 169, 578e601. https://doi.org/10.1016/j.petrol.2018. and Fuels, 30(2), 984e991. https://doi.org/10.1021/
06.017. acs.energyfuels.5b02848.
Davies, J. T. (1957). A quantitative kinetic theory of emulsion Huggins, M. L. (1942). The viscosity of dilute solutions of long-
type I. Physical chemistry of the emulsifying. In Interna- chain molecules. IV. Dependence on concentration. Journal
tional congress of surface acitivity. London: Butterworths. of the American Chemical Society, 64(11), 2716e2718.
Delshad, M., Kim, D. H., Magbagbeola, O. A., Huh, C., https://doi.org/10.1021/ja01263a056.
Pope, G. A., & Tarahhom, F. (2008). Mechanistic interpre- Huh, C. (1979). Interfacial tensions and solubilizing ability of
tation and utilization of viscoelastic behavior of polymer a microemulsion phase that coexists with oil and brine.
solutions for improved polymer-flood efficiency. In Paper Journal of Colloid and Interface Science, 71(2), 408e426.
presented at the SPE symposium on improved oil recovery, Tulsa, https://doi.org/10.1016/0021-9797(79)90249-2.
Oklahoma, USA, 20e23 April. https://doi.org/10.2118/ Johannessen, A. M., & Spildo, K. (2013). Enhanced oil recovery
113620-MS. (EOR) by combining surfactant with low salinity injection.
deZabala, E. F., Vislocky, J. M., Rubin, E., & Radke, C. J. (1982). Energy and Fuels, 27(10), 5738e5749. https://doi.org/
A chemical theory for linear alkaline flooding. SPE Journal, 10.1021/ef400596b.
22(02), 245e258. https://doi.org/10.2118/8997-PA. Johannessen, A. M., & Spildo, K. (2014). Can lowering the in-
Farajzadeh, R., Matsuura, T., Batenburg, D.van, & Harm, D. jection brine salinity further increase oil recovery by surfac-
(2012). Detailed modeling of the alkali/surfactant/polymer tant injection under otherwise similar conditions? Energy
(ASP) process by coupling a multipurpose reservoir simu- and Fuels, 28(11), 6723e6734. https://doi.org/10.1021/
lator to the chemistry package PHREEQC. SPE Reservoir ef500995y.
Evaluation and Engineering, 15(04), 423e435. https:// Karimi, M., Al-Maamari, R. S., Ayatollahi, S., & Mehranbod, N.
doi.org/10.2118/143671-PA. (2016). Wettability alteration and oil recovery by sponta-
Ghadami, N., Deo Tewari, R., Zarubinska, M., & Motaei, E. neous imbibition of low salinity brine into carbonates:
2þ
2
(2018). The impact of ion exchange and surfactant parti- Impact of Mg ,SO 4 and cationic surfactant. Journal of Pe-
tioning on ASP modeling, a Brown offshore field. In Paper troleum Science and Engineering, 147, 560e569. https://
presented at the offshore technology conference Asia, Kuala doi.org/10.1016/j.petrol.2016.09.015.